Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W4396645692', 'doi': 'https://doi.org/10.1101/2024.05.01.592076', 'title': 'Feature Selection Using Lasso Regression Enhances Deep Learning Model Performance For Diagnosis Of Lung Cancer from Transcriptomic Data', 'display_name': 'Feature Selection Using Lasso Regression Enhances Deep Learning Model Performance For Diagnosis Of Lung Cancer from Transcriptomic Data', 'publication_year': 2024, 'publication_date': '2024-05-04', 'ids': {'openalex': 'https://openalex.org/W4396645692', 'doi': 'https://doi.org/10.1101/2024.05.01.592076'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1101/2024.05.01.592076', 'pdf_url': 'https://www.biorxiv.org/content/biorxiv/early/2024/05/04/2024.05.01.592076.full.pdf', 'source': {'id': 'https://openalex.org/S4306402567', 'display_name': 'bioRxiv (Cold Spring Harbor Laboratory)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I2750212522', 'host_organization_name': 'Cold Spring Harbor Laboratory', 'host_organization_lineage': ['https://openalex.org/I2750212522'], 'host_organization_lineage_names': ['Cold Spring Harbor Laboratory'], 'type': 'repository'}, 'license': 'cc-by-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nd', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'posted-content', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://www.biorxiv.org/content/biorxiv/early/2024/05/04/2024.05.01.592076.full.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5021852324', 'display_name': 'Souvik Guha', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I59475050', 'display_name': 'Jamia Millia Islamia', 'ror': 'https://ror.org/00pnhhv55', 'country_code': 'IN', 'type': 'education', 'lineage': ['https://openalex.org/I59475050']}], 'countries': ['IN'], 'is_corresponding': True, 'raw_author_name': 'Souvik Guha', 'raw_affiliation_strings': ['JAMIA MILLIA ISLAMIA'], 'affiliations': [{'raw_affiliation_string': 'JAMIA MILLIA ISLAMIA', 'institution_ids': ['https://openalex.org/I59475050']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5021852324'], 'corresponding_institution_ids': ['https://openalex.org/I59475050'], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': False, 'cited_by_count': 0, 'citation_normalized_percentile': {'value': 0.0, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 0, 'max': 83}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10515', 'display_name': 'Cancer-related molecular mechanisms research', 'score': 0.9955, 'subfield': {'id': 'https://openalex.org/subfields/1306', 'display_name': 'Cancer Research'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10515', 'display_name': 'Cancer-related molecular mechanisms research', 'score': 0.9955, 'subfield': {'id': 'https://openalex.org/subfields/1306', 'display_name': 'Cancer Research'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, {'id': 'https://openalex.org/T10885', 'display_name': 'Gene expression and cancer classification', 'score': 0.9907, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, {'id': 'https://openalex.org/T12254', 'display_name': 'Machine Learning in Bioinformatics', 'score': 0.9774, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/lasso', 'display_name': 'Lasso', 'score': 0.89107513}, {'id': 'https://openalex.org/keywords/elastic-net-regularization', 'display_name': 'Elastic net regularization', 'score': 0.67599356}, {'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.57606065}], 'concepts': [{'id': 'https://openalex.org/C37616216', 'wikidata': 'https://www.wikidata.org/wiki/Q3218363', 'display_name': 'Lasso (programming language)', 'level': 2, 'score': 0.89107513}, {'id': 'https://openalex.org/C148483581', 'wikidata': 'https://www.wikidata.org/wiki/Q446488', 'display_name': 'Feature selection', 'level': 2, 'score': 0.83605087}, {'id': 'https://openalex.org/C203868755', 'wikidata': 'https://www.wikidata.org/wiki/Q5353562', 'display_name': 'Elastic net regularization', 'level': 3, 'score': 0.67599356}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.6364277}, {'id': 'https://openalex.org/C81917197', 'wikidata': 'https://www.wikidata.org/wiki/Q628760', 'display_name': 'Selection (genetic algorithm)', 'level': 2, 'score': 0.58870834}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.57606065}, {'id': 'https://openalex.org/C83546350', 'wikidata': 'https://www.wikidata.org/wiki/Q1139051', 'display_name': 'Regression', 'level': 2, 'score': 0.5373757}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.51782495}, {'id': 'https://openalex.org/C2776256026', 'wikidata': 'https://www.wikidata.org/wiki/Q47912', 'display_name': 'Lung cancer', 'level': 2, 'score': 0.50303215}, {'id': 'https://openalex.org/C152877465', 'wikidata': 'https://www.wikidata.org/wiki/Q208042', 'display_name': 'Regression analysis', 'level': 2, 'score': 0.45903137}, {'id': 'https://openalex.org/C93959086', 'wikidata': 'https://www.wikidata.org/wiki/Q6888345', 'display_name': 'Model selection', 'level': 2, 'score': 0.45776537}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.4412629}, {'id': 'https://openalex.org/C121608353', 'wikidata': 'https://www.wikidata.org/wiki/Q12078', 'display_name': 'Cancer', 'level': 2, 'score': 0.43103752}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.40080822}, {'id': 'https://openalex.org/C124101348', 'wikidata': 'https://www.wikidata.org/wiki/Q172491', 'display_name': 'Data mining', 'level': 1, 'score': 0.3346107}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.20727569}, {'id': 'https://openalex.org/C143998085', 'wikidata': 'https://www.wikidata.org/wiki/Q162555', 'display_name': 'Oncology', 'level': 1, 'score': 0.19514373}, {'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.18306974}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.17814186}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.12054446}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C136764020', 'wikidata': 'https://www.wikidata.org/wiki/Q466', 'display_name': 'World Wide Web', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1101/2024.05.01.592076', 'pdf_url': 'https://www.biorxiv.org/content/biorxiv/early/2024/05/04/2024.05.01.592076.full.pdf', 'source': {'id': 'https://openalex.org/S4306402567', 'display_name': 'bioRxiv (Cold Spring Harbor Laboratory)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I2750212522', 'host_organization_name': 'Cold Spring Harbor Laboratory', 'host_organization_lineage': ['https://openalex.org/I2750212522'], 'host_organization_lineage_names': ['Cold Spring Harbor Laboratory'], 'type': 'repository'}, 'license': 'cc-by-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nd', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1101/2024.05.01.592076', 'pdf_url': 'https://www.biorxiv.org/content/biorxiv/early/2024/05/04/2024.05.01.592076.full.pdf', 'source': {'id': 'https://openalex.org/S4306402567', 'display_name': 'bioRxiv (Cold Spring Harbor Laboratory)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I2750212522', 'host_organization_name': 'Cold Spring Harbor Laboratory', 'host_organization_lineage': ['https://openalex.org/I2750212522'], 'host_organization_lineage_names': ['Cold Spring Harbor Laboratory'], 'type': 'repository'}, 'license': 'cc-by-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nd', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/3', 'score': 0.41, 'display_name': 'Good health and well-being'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 18, 'referenced_works': ['https://openalex.org/W1543960810', 'https://openalex.org/W1692174238', 'https://openalex.org/W1990014583', 'https://openalex.org/W2002793133', 'https://openalex.org/W2033649338', 'https://openalex.org/W2075747141', 'https://openalex.org/W2076063813', 'https://openalex.org/W2287398810', 'https://openalex.org/W2794485348', 'https://openalex.org/W2893154092', 'https://openalex.org/W2945103729', 'https://openalex.org/W2972272278', 'https://openalex.org/W2995562343', 'https://openalex.org/W3125200870', 'https://openalex.org/W3128646645', 'https://openalex.org/W3194730353', 'https://openalex.org/W4387859672', 'https://openalex.org/W4393859480'], 'related_works': ['https://openalex.org/W757986597', 'https://openalex.org/W4399551893', 'https://openalex.org/W4213314600', 'https://openalex.org/W4212910148', 'https://openalex.org/W4210804200', 'https://openalex.org/W2765894738', 'https://openalex.org/W2468272465', 'https://openalex.org/W2429564919', 'https://openalex.org/W2380784125', 'https://openalex.org/W1997711767'], 'abstract_inverted_index': {'Abstract': [0], 'Cancer': [1], 'is': [2, 71, 97, 120], 'a': [3, 21, 98, 149, 158, 170, 205, 219, 294], 'genetic': [4], 'disease': [5, 12], 'where': [6], 'gene': [7, 17, 166, 213], 'mutations': [8], 'are': [9, 179, 189], 'pivotal': [10], 'in': [11, 75, 90, 111, 143, 208], 'initiation': [13], 'and': [14, 34, 84, 184, 231, 252, 275, 306], 'pathophysiology.': [15], 'The': [16, 224, 239, 256], 'expression': [18, 49, 167], 'profile': [19], 'follows': [20], 'specific': [22], 'pattern': [23], 'exclusive': [24], 'to': [25, 104, 115, 134, 199, 243, 249, 292, 304], 'each': [26], 'cancer': [27, 182], 'which': [28, 108, 176], 'can': [29, 87, 102, 129], 'be': [30, 88], 'utilized': [31], 'for': [32, 163, 237], 'early': [33, 305], 'accurate': [35], 'diagnosis.': [36], 'Microarray': [37], 'techniques': [38, 79, 127], 'have': [39], 'emerged': [40], 'as': [41, 247], 'powerful': [42], 'tools': [43], 'capable': [44], 'of': [45, 51, 53, 57, 61, 67, 122, 137, 140, 172, 175, 180, 190, 265, 269, 273, 278, 297, 309], 'simultaneously': [46], 'capturing': [47], 'the': [48, 58, 62, 68, 106, 123, 135, 165, 185, 201, 209, 232, 288, 302], 'profiles': [50], 'thousands': [52], 'genes.': [54], 'However,': [55], 'because': [56], 'high': [59], 'dimensionality': [60, 116], 'produced': [63], 'transcriptome': [64, 312], 'data,': [65], 'analysis': [66], 'resulting': [69], 'datasets': [70], 'challenging.': [72], 'Recent': [73], 'advancements': [74], 'Artificial': [76], 'Intelligence': [77], '(AI)': [78], 'like': [80], 'Machine': [81], 'Learning': [82, 86, 119], '(ML)': [83], 'Deep': [85, 118, 150, 221], 'instrumental': [89], 'efficiently': [91], 'processing': [92], 'these': [93], 'high-dimensional': [94, 131], 'datasets.': [95], 'LASSO-regression': [96], 'ML': [99, 126], 'technique': [100], 'that': [101, 128, 203], 'help': [103, 110], 'rank': [105], 'features': [107], 'could': [109, 300], 'feature': [112, 161], 'selection': [113], 'leading': [114], 'reduction.': [117], 'one': [121], 'most': [124], 'sophisticated': [125], 'process': [130], 'data': [132, 230], 'owing': [133], 'presence': [136], 'more': [138], 'number': [139], 'hidden': [141], 'layers': [142], 'its': [144], 'neural': [145], 'network.': [146], 'We': [147], 'designed': [148], 'Neural': [151, 222], 'Network': [152], '(DNN)': [153], 'classifier': [154, 225, 241], 'model': [155, 196, 289], 'fused': [156], 'with': [157, 228, 261], 'LASSO-based': [159], 'significant': [160, 206, 212], 'extractor': [162], 'classifying': [164], 'dataset': [168], 'containing': [169], 'total': [171], '51': [173], 'samples': [174, 178, 188], '24': [177], 'lung': [181], 'patients': [183], 'remaining': [186], '27': [187], 'normal': [191], 'individuals.': [192], 'A': [193], 'LASSO': [194, 250], 'regression': [195, 251], 'was': [197, 226, 235, 290], 'implemented': [198], 'identify': [200], 'genes': [202], 'played': [204], 'role': [207], 'classification.': [210], 'These': [211], 'expressions': [214], 'were': [215, 259], 'then': [216], 'fed': [217], 'into': [218], 'convergent': [220], 'Architecture.': [223], 'trained': [227], '70%': [229], 'rest': [233], '30%': [234], 'used': [236, 254], 'validation.': [238], 'proposed': [240], 'proved': [242], 'provide': [244], 'better': [245, 307], 'classification': [246, 295], 'compared': [248], 'DNN': [253], 'individually.': [255], 'two': [257], 'classes': [258], 'classified': [260], 'an': [262], 'average': [263, 267, 271, 276], 'accuracy': [264, 296], '96.25%,': [266], 'precision': [268], '99.67%,': [270], 'specificity': [272], '99.45%': [274], 'sensitivity': [277], '91.73%': [279], 'measured': [280], 'over': [281], 'thirty': [282], 'independent': [283], 'assessments.': [284], 'In': [285], 'some': [286], 'cases,': [287], 'able': [291], 'obtain': [293], '100%.': [298], 'This': [299], 'open': [301], 'path': [303], 'diagnosis': [308], 'cancers': [310], 'from': [311], 'data.': [313]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W4396645692', 'counts_by_year': [], 'updated_date': '2025-01-12T08:19:27.291978', 'created_date': '2024-05-05'}