Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2765894738', 'doi': 'https://doi.org/10.1142/s2010326317500150', 'title': 'Cluster feature selection in high-dimensional linear models', 'display_name': 'Cluster feature selection in high-dimensional linear models', 'publication_year': 2017, 'publication_date': '2017-10-26', 'ids': {'openalex': 'https://openalex.org/W2765894738', 'doi': 'https://doi.org/10.1142/s2010326317500150', 'mag': '2765894738'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1142/s2010326317500150', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4210169430', 'display_name': 'Random Matrices Theory and Application', 'issn_l': '2010-3263', 'issn': ['2010-3263', '2010-3271'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319815', 'host_organization_name': 'World Scientific', 'host_organization_lineage': ['https://openalex.org/P4310319815'], 'host_organization_lineage_names': ['World Scientific'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5102013376', 'display_name': 'Bingqing Lin', 'orcid': 'https://orcid.org/0000-0001-9086-0167'}, 'institutions': [{'id': 'https://openalex.org/I180726961', 'display_name': 'Shenzhen University', 'ror': 'https://ror.org/01vy4gh70', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I180726961']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Bingqing Lin', 'raw_affiliation_strings': ['Institute of Statistical Sciences, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China'], 'affiliations': [{'raw_affiliation_string': 'Institute of Statistical Sciences, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China', 'institution_ids': ['https://openalex.org/I180726961']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5028830654', 'display_name': 'Zhen Pang', 'orcid': 'https://orcid.org/0000-0002-3430-7532'}, 'institutions': [{'id': 'https://openalex.org/I14243506', 'display_name': 'Hong Kong Polytechnic University', 'ror': 'https://ror.org/0030zas98', 'country_code': 'HK', 'type': 'education', 'lineage': ['https://openalex.org/I14243506']}], 'countries': ['HK'], 'is_corresponding': False, 'raw_author_name': 'Zhen Pang', 'raw_affiliation_strings': ['Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong'], 'affiliations': [{'raw_affiliation_string': 'Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong', 'institution_ids': ['https://openalex.org/I14243506']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5100603439', 'display_name': 'Qihua Wang', 'orcid': 'https://orcid.org/0000-0003-3708-8504'}, 'institutions': [{'id': 'https://openalex.org/I180726961', 'display_name': 'Shenzhen University', 'ror': 'https://ror.org/01vy4gh70', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I180726961']}, {'id': 'https://openalex.org/I4210120485', 'display_name': 'Academy of Mathematics and Systems Science', 'ror': 'https://ror.org/02jkmyk67', 'country_code': 'CN', 'type': 'facility', 'lineage': ['https://openalex.org/I19820366', 'https://openalex.org/I4210120485']}, {'id': 'https://openalex.org/I19820366', 'display_name': 'Chinese Academy of Sciences', 'ror': 'https://ror.org/034t30j35', 'country_code': 'CN', 'type': 'government', 'lineage': ['https://openalex.org/I19820366']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Qihua Wang', 'raw_affiliation_strings': ['Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China', 'Institute of Statistical Sciences, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China'], 'affiliations': [{'raw_affiliation_string': 'Institute of Statistical Sciences, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China', 'institution_ids': ['https://openalex.org/I180726961']}, {'raw_affiliation_string': 'Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China', 'institution_ids': ['https://openalex.org/I4210120485', 'https://openalex.org/I19820366']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 4, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.0, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 1, 'citation_normalized_percentile': {'value': 0.337672, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 63, 'max': 71}, 'biblio': {'volume': '07', 'issue': '01', 'first_page': '1750015', 'last_page': '1750015'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10136', 'display_name': 'Statistical Methods and Inference', 'score': 0.9984, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10136', 'display_name': 'Statistical Methods and Inference', 'score': 0.9984, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11901', 'display_name': 'Bayesian Methods and Mixture Models', 'score': 0.9955, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11871', 'display_name': 'Advanced Statistical Methods and Models', 'score': 0.992, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/lasso', 'display_name': 'Lasso', 'score': 0.8575139}, {'id': 'https://openalex.org/keywords/elastic-net-regularization', 'display_name': 'Elastic net regularization', 'score': 0.78106946}, {'id': 'https://openalex.org/keywords/independence', 'display_name': 'Independence', 'score': 0.67540073}, {'id': 'https://openalex.org/keywords/distance-correlation', 'display_name': 'Distance correlation', 'score': 0.52981436}, {'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.4705874}], 'concepts': [{'id': 'https://openalex.org/C37616216', 'wikidata': 'https://www.wikidata.org/wiki/Q3218363', 'display_name': 'Lasso (programming language)', 'level': 2, 'score': 0.8575139}, {'id': 'https://openalex.org/C148483581', 'wikidata': 'https://www.wikidata.org/wiki/Q446488', 'display_name': 'Feature selection', 'level': 2, 'score': 0.85270375}, {'id': 'https://openalex.org/C203868755', 'wikidata': 'https://www.wikidata.org/wiki/Q5353562', 'display_name': 'Elastic net regularization', 'level': 3, 'score': 0.78106946}, {'id': 'https://openalex.org/C35651441', 'wikidata': 'https://www.wikidata.org/wiki/Q625303', 'display_name': 'Independence (probability theory)', 'level': 2, 'score': 0.67540073}, {'id': 'https://openalex.org/C48921125', 'wikidata': 'https://www.wikidata.org/wiki/Q10861030', 'display_name': 'Linear regression', 'level': 2, 'score': 0.6280071}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.55233103}, {'id': 'https://openalex.org/C163175372', 'wikidata': 'https://www.wikidata.org/wiki/Q3339222', 'display_name': 'Linear model', 'level': 2, 'score': 0.5411659}, {'id': 'https://openalex.org/C121694360', 'wikidata': 'https://www.wikidata.org/wiki/Q5282862', 'display_name': 'Distance correlation', 'level': 3, 'score': 0.52981436}, {'id': 'https://openalex.org/C117220453', 'wikidata': 'https://www.wikidata.org/wiki/Q5172842', 'display_name': 'Correlation', 'level': 2, 'score': 0.51962036}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.47651494}, {'id': 'https://openalex.org/C182365436', 'wikidata': 'https://www.wikidata.org/wiki/Q50701', 'display_name': 'Variable (mathematics)', 'level': 2, 'score': 0.47185135}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.4705874}, {'id': 'https://openalex.org/C2776502983', 'wikidata': 'https://www.wikidata.org/wiki/Q690182', 'display_name': 'Contrast (vision)', 'level': 2, 'score': 0.44123423}, {'id': 'https://openalex.org/C81917197', 'wikidata': 'https://www.wikidata.org/wiki/Q628760', 'display_name': 'Selection (genetic algorithm)', 'level': 2, 'score': 0.42708123}, {'id': 'https://openalex.org/C164866538', 'wikidata': 'https://www.wikidata.org/wiki/Q367351', 'display_name': 'Cluster (spacecraft)', 'level': 2, 'score': 0.41991368}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.35483205}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.3530358}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.25117728}, {'id': 'https://openalex.org/C122123141', 'wikidata': 'https://www.wikidata.org/wiki/Q176623', 'display_name': 'Random variable', 'level': 2, 'score': 0.1654374}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C136764020', 'wikidata': 'https://www.wikidata.org/wiki/Q466', 'display_name': 'World Wide Web', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1142/s2010326317500150', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4210169430', 'display_name': 'Random Matrices Theory and Application', 'issn_l': '2010-3263', 'issn': ['2010-3263', '2010-3271'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319815', 'host_organization_name': 'World Scientific', 'host_organization_lineage': ['https://openalex.org/P4310319815'], 'host_organization_lineage_names': ['World Scientific'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 16, 'referenced_works': ['https://openalex.org/W1580111774', 'https://openalex.org/W1849963216', 'https://openalex.org/W2018882974', 'https://openalex.org/W2037366835', 'https://openalex.org/W2053061982', 'https://openalex.org/W2056938357', 'https://openalex.org/W2060170493', 'https://openalex.org/W2075490785', 'https://openalex.org/W2097360283', 'https://openalex.org/W2122825543', 'https://openalex.org/W2147534083', 'https://openalex.org/W2154560360', 'https://openalex.org/W2164092415', 'https://openalex.org/W3122008423', 'https://openalex.org/W4247571494', 'https://openalex.org/W4294541781'], 'related_works': ['https://openalex.org/W757986597', 'https://openalex.org/W4213314600', 'https://openalex.org/W4212910148', 'https://openalex.org/W4210804200', 'https://openalex.org/W2804784031', 'https://openalex.org/W2765894738', 'https://openalex.org/W2468272465', 'https://openalex.org/W2429564919', 'https://openalex.org/W2380784125', 'https://openalex.org/W1997711767'], 'abstract_inverted_index': {'This': [0, 64, 91], 'paper': [1], 'concerns': [2], 'with': [3], 'variable': [4, 32, 73], 'screening': [5, 33, 150, 159], 'when': [6, 101], 'highly': [7, 54, 104], 'correlated': [8, 55, 77, 105], 'variables': [9, 86, 100], 'exist': [10], 'in': [11, 66], 'high-dimensional': [12], 'linear': [13, 30, 71], 'models.': [14], 'We': [15], 'propose': [16], 'a': [17], 'novel': [18], 'cluster': [19], 'feature': [20, 163], 'selection': [21, 113, 145], '(CFS)': [22], 'procedure': [23], 'based': [24], 'on': [25], 'the': [26, 36, 39, 44, 47, 50, 61, 69, 81, 93, 115, 129, 132, 181, 197], 'elastic': [27, 82], 'net': [28, 83], 'and': [29, 49, 87, 112, 141, 154, 190], 'correlation': [31, 45, 72, 135], 'to': [34, 68, 84, 179, 195], 'enjoy': [35], 'benefits': [37], 'of': [38, 57, 60, 95, 200], 'two': [40], 'methods.': [41], 'When': [42], 'calculating': [43], 'between': [46, 137], 'predictor': [48], 'response,': [51], 'we': [52, 79], 'consider': [53], 'groups': [56], 'predictors': [58], 'instead': [59], 'individual': [62], 'ones.': [63], 'is': [65], 'contrast': [67], 'usual': [70], 'screening.': [74], 'Within': [75], 'each': [76], 'group,': [78], 'apply': [80], 'select': [85], 'estimate': [88], 'their': [89], 'parameters.': [90], 'avoids': [92], 'drawback': [94], 'mistakenly': [96], 'eliminating': [97], 'true': [98], 'relevant': [99], 'they': [102], 'are': [103, 193], 'like': [106, 147], 'LASSO': [107, 175], '[R.': [108], 'Tibshirani,': [109], 'Regression': [110], 'shrinkage': [111], 'via': [114], 'lasso,': [116], 'J.': [117, 155, 165], 'R.': [118, 166], 'Stat.': [119, 167], 'Soc.': [120, 168], 'Ser.': [121, 169], 'B': [122, 170], '58': [123], '(1996)': [124], '268–288]': [125], 'does.': [126], 'After': [127], 'applying': [128], 'CFS': [130], 'procedure,': [131], 'maximum': [133], 'absolute': [134], 'coefficient': [136], 'clusters': [138], 'becomes': [139], 'smaller': [140], 'any': [142], 'common': [143], 'model': [144], 'methods': [146], 'sure': [148], 'independence': [149, 158], '(SIS)': [151], '[J.': [152], 'Fan': [153], 'Lv,': [156], 'Sure': [157], 'for': [160], 'ultrahigh': [161], 'dimensional': [162], 'space,': [164], '70': [171], '(2008)': [172], '849–911]': [173], 'or': [174], 'can': [176], 'be': [177], 'applied': [178], 'improve': [180], 'results.': [182], 'Extensive': [183], 'numerical': [184], 'examples': [185, 189, 192], 'including': [186], 'pure': [187], 'simulation': [188], 'semi-real': [191], 'conducted': [194], 'show': [196], 'good': [198], 'performances': [199], 'our': [201], 'procedure.': [202]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2765894738', 'counts_by_year': [{'year': 2022, 'cited_by_count': 1}], 'updated_date': '2025-01-13T00:14:09.749892', 'created_date': '2017-11-10'}