Title: Sedimentary petrological characteristics of lateral and frontal moraine and proglacial glaciofluvial sediments of Bertilbreen, Central Svalbard
Abstract:Bertilbreen is a valley glacier located in the central part of the Spitsbergen Island, Svalbard. Glacier bedrock is composed of Devonian Old Red facies sedimentary rocks, Carboniferous clastic sedimen...Bertilbreen is a valley glacier located in the central part of the Spitsbergen Island, Svalbard. Glacier bedrock is composed of Devonian Old Red facies sedimentary rocks, Carboniferous clastic sedimentary rocks and Carboniferous to Permian limestones. Cobble clasts from the right-hand lateral moraine, frontal moraine and proglacial glaciofluvial sediments were studied. The upper part of the lateral moraine is composed mostly of passively transported supraglacial debris (originally unmodified scree, snow and scree/rock avalanche deposits) with a small proportion of actively transported clasts or reworked glaciofluvial sediments. Clasts in the middle part of the lateral moraine originate predominantly from the frontal moraine of a small glacier in the lateral valley. The lower part of the lateral moraine and frontal moraine of Bertilbreen are rich in subglacially transported material, which is supported by isometric clast shapes, roundness degree and common clast surface striations. Coarse gravel forms longitudinal bars in the glaciofluvial stream flowing from the glacier front. In the southern mouth of the valley, the proglacial stream grades into a braided outwash fan. Clast nature is affected by the source from the surrounding glacial deposits and bedrock outcrops, the impact of glaciofluvial transport on the clast nature increases in the braided outwash fan. Clast shapes are primarily influenced by bedding and fractures of source rocks, but are also significantly influenced by the type and proximity of material sources. Striation is cleared away the clast surface during the glaciofluvial transport. A morphostrati-graphically older glaciofluvial terrace formed by glaciofluvial sediments deposited during the glacier advance culminating during the Little Ice Age (LIA) is located at the southern end of the valley. The comparison of active proglacial stream sediments and those from older glaciofluvial terrace was done using the coarse pebble fraction.Read More