Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2084206311', 'doi': 'https://doi.org/10.1307/mmj/1030132725', 'title': 'Gromov-Witten invariants of a class of toric varieties.', 'display_name': 'Gromov-Witten invariants of a class of toric varieties.', 'publication_year': 2000, 'publication_date': '2000-01-01', 'ids': {'openalex': 'https://openalex.org/W2084206311', 'doi': 'https://doi.org/10.1307/mmj/1030132725', 'mag': '2084206311'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1307/mmj/1030132725', 'pdf_url': 'https://projecteuclid.org/journals/michigan-mathematical-journal/volume-48/issue-1/Gromov-Witten-invariants-of-a-class-of-toric-varieties/10.1307/mmj/1030132725.pdf', 'source': {'id': 'https://openalex.org/S177543170', 'display_name': 'The Michigan Mathematical Journal', 'issn_l': '0026-2285', 'issn': ['0026-2285', '1945-2365'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319881', 'host_organization_name': 'Institute of Mathematical Statistics', 'host_organization_lineage': ['https://openalex.org/P4310319881'], 'host_organization_lineage_names': ['Institute of Mathematical Statistics'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'bronze', 'oa_url': 'https://projecteuclid.org/journals/michigan-mathematical-journal/volume-48/issue-1/Gromov-Witten-invariants-of-a-class-of-toric-varieties/10.1307/mmj/1030132725.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5071870056', 'display_name': 'Andrew Kresch', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I202697423', 'display_name': 'University of Zurich', 'ror': 'https://ror.org/02crff812', 'country_code': 'CH', 'type': 'education', 'lineage': ['https://openalex.org/I202697423']}], 'countries': ['CH'], 'is_corresponding': True, 'raw_author_name': 'Andrew Kresch', 'raw_affiliation_strings': ['Zurich Open Repository and Archive University of Zurich University Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch'], 'affiliations': [{'raw_affiliation_string': 'Zurich Open Repository and Archive University of Zurich University Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch', 'institution_ids': ['https://openalex.org/I202697423']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5071870056'], 'corresponding_institution_ids': ['https://openalex.org/I202697423'], 'apc_list': None, 'apc_paid': None, 'fwci': 1.694, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 11, 'citation_normalized_percentile': {'value': 0.669102, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 80, 'max': 81}, 'biblio': {'volume': '48', 'issue': '1', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10061', 'display_name': 'Algebraic Geometry and Number Theory', 'score': 0.9991, 'subfield': {'id': 'https://openalex.org/subfields/2608', 'display_name': 'Geometry and Topology'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10061', 'display_name': 'Algebraic Geometry and Number Theory', 'score': 0.9991, 'subfield': {'id': 'https://openalex.org/subfields/2608', 'display_name': 'Geometry and Topology'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10948', 'display_name': 'Advanced Combinatorial Mathematics', 'score': 0.9937, 'subfield': {'id': 'https://openalex.org/subfields/2607', 'display_name': 'Discrete Mathematics and Combinatorics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12649', 'display_name': 'Alkaloids: synthesis and pharmacology', 'score': 0.9654, 'subfield': {'id': 'https://openalex.org/subfields/3004', 'display_name': 'Pharmacology'}, 'field': {'id': 'https://openalex.org/fields/30', 'display_name': 'Pharmacology, Toxicology and Pharmaceutics'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/toric-variety', 'display_name': 'Toric variety', 'score': 0.9004755}, {'id': 'https://openalex.org/keywords/cohomology-ring', 'display_name': 'Cohomology ring', 'score': 0.4848898}, {'id': 'https://openalex.org/keywords/complex-torus', 'display_name': 'Complex torus', 'score': 0.4732514}, {'id': 'https://openalex.org/keywords/equivariant-map', 'display_name': 'Equivariant map', 'score': 0.4571933}, {'id': 'https://openalex.org/keywords/lattice', 'display_name': 'Lattice (music)', 'score': 0.42769784}, {'id': 'https://openalex.org/keywords/algebraic-variety', 'display_name': 'Algebraic variety', 'score': 0.42158508}], 'concepts': [{'id': 'https://openalex.org/C5052557', 'wikidata': 'https://www.wikidata.org/wiki/Q1528306', 'display_name': 'Toric variety', 'level': 2, 'score': 0.9004755}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.87962735}, {'id': 'https://openalex.org/C11252640', 'wikidata': 'https://www.wikidata.org/wiki/Q243723', 'display_name': 'Monomial', 'level': 2, 'score': 0.6639269}, {'id': 'https://openalex.org/C202444582', 'wikidata': 'https://www.wikidata.org/wiki/Q837863', 'display_name': 'Pure mathematics', 'level': 1, 'score': 0.57253206}, {'id': 'https://openalex.org/C78606066', 'wikidata': 'https://www.wikidata.org/wiki/Q1198376', 'display_name': 'Cohomology', 'level': 2, 'score': 0.5659094}, {'id': 'https://openalex.org/C136660716', 'wikidata': 'https://www.wikidata.org/wiki/Q7269022', 'display_name': 'Quantum cohomology', 'level': 4, 'score': 0.526978}, {'id': 'https://openalex.org/C203492994', 'wikidata': 'https://www.wikidata.org/wiki/Q909669', 'display_name': 'Divisor (algebraic geometry)', 'level': 2, 'score': 0.49593434}, {'id': 'https://openalex.org/C2779185822', 'wikidata': 'https://www.wikidata.org/wiki/Q5141399', 'display_name': 'Cohomology ring', 'level': 4, 'score': 0.4848898}, {'id': 'https://openalex.org/C28890030', 'wikidata': 'https://www.wikidata.org/wiki/Q5156610', 'display_name': 'Complex torus', 'level': 3, 'score': 0.4732514}, {'id': 'https://openalex.org/C171036898', 'wikidata': 'https://www.wikidata.org/wiki/Q256355', 'display_name': 'Equivariant map', 'level': 2, 'score': 0.4571933}, {'id': 'https://openalex.org/C136197465', 'wikidata': 'https://www.wikidata.org/wiki/Q1729295', 'display_name': 'Variety (cybernetics)', 'level': 2, 'score': 0.4321053}, {'id': 'https://openalex.org/C2781204021', 'wikidata': 'https://www.wikidata.org/wiki/Q6497091', 'display_name': 'Lattice (music)', 'level': 2, 'score': 0.42769784}, {'id': 'https://openalex.org/C165761256', 'wikidata': 'https://www.wikidata.org/wiki/Q648995', 'display_name': 'Algebraic variety', 'level': 3, 'score': 0.42158508}, {'id': 'https://openalex.org/C114614502', 'wikidata': 'https://www.wikidata.org/wiki/Q76592', 'display_name': 'Combinatorics', 'level': 1, 'score': 0.40611148}, {'id': 'https://openalex.org/C72738302', 'wikidata': 'https://www.wikidata.org/wiki/Q5384738', 'display_name': 'Equivariant cohomology', 'level': 3, 'score': 0.3993147}, {'id': 'https://openalex.org/C9767117', 'wikidata': 'https://www.wikidata.org/wiki/Q12510', 'display_name': 'Torus', 'level': 2, 'score': 0.3766435}, {'id': 'https://openalex.org/C9376300', 'wikidata': 'https://www.wikidata.org/wiki/Q168817', 'display_name': 'Algebraic number', 'level': 2, 'score': 0.3079971}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.10996607}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.08322853}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C24890656', 'wikidata': 'https://www.wikidata.org/wiki/Q82811', 'display_name': 'Acoustics', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 3, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1307/mmj/1030132725', 'pdf_url': 'https://projecteuclid.org/journals/michigan-mathematical-journal/volume-48/issue-1/Gromov-Witten-invariants-of-a-class-of-toric-varieties/10.1307/mmj/1030132725.pdf', 'source': {'id': 'https://openalex.org/S177543170', 'display_name': 'The Michigan Mathematical Journal', 'issn_l': '0026-2285', 'issn': ['0026-2285', '1945-2365'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319881', 'host_organization_name': 'Institute of Mathematical Statistics', 'host_organization_lineage': ['https://openalex.org/P4310319881'], 'host_organization_lineage_names': ['Institute of Mathematical Statistics'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': None, 'pdf_url': 'http://arxiv.org/pdf/math/0004109v1.pdf', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'http://arxiv.org/abs/math/0004109', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1307/mmj/1030132725', 'pdf_url': 'https://projecteuclid.org/journals/michigan-mathematical-journal/volume-48/issue-1/Gromov-Witten-invariants-of-a-class-of-toric-varieties/10.1307/mmj/1030132725.pdf', 'source': {'id': 'https://openalex.org/S177543170', 'display_name': 'The Michigan Mathematical Journal', 'issn_l': '0026-2285', 'issn': ['0026-2285', '1945-2365'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319881', 'host_organization_name': 'Institute of Mathematical Statistics', 'host_organization_lineage': ['https://openalex.org/P4310319881'], 'host_organization_lineage_names': ['Institute of Mathematical Statistics'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 27, 'referenced_works': ['https://openalex.org/W1503277431', 'https://openalex.org/W150586754', 'https://openalex.org/W1510974109', 'https://openalex.org/W1521877949', 'https://openalex.org/W1625744204', 'https://openalex.org/W1691317670', 'https://openalex.org/W1761439427', 'https://openalex.org/W1858610866', 'https://openalex.org/W1973936043', 'https://openalex.org/W1979199033', 'https://openalex.org/W1990253598', 'https://openalex.org/W1992727524', 'https://openalex.org/W2021311057', 'https://openalex.org/W2032094438', 'https://openalex.org/W2034404907', 'https://openalex.org/W2060183599', 'https://openalex.org/W2129221945', 'https://openalex.org/W2136480649', 'https://openalex.org/W2516839107', 'https://openalex.org/W2594441202', 'https://openalex.org/W2951199322', 'https://openalex.org/W2951896552', 'https://openalex.org/W2964028246', 'https://openalex.org/W3087991662', 'https://openalex.org/W3101225833', 'https://openalex.org/W3102484428', 'https://openalex.org/W92146599'], 'related_works': ['https://openalex.org/W4300006253', 'https://openalex.org/W3148099126', 'https://openalex.org/W2963870741', 'https://openalex.org/W2952354211', 'https://openalex.org/W2951810787', 'https://openalex.org/W2951560759', 'https://openalex.org/W2797357567', 'https://openalex.org/W2117524685', 'https://openalex.org/W2103026818', 'https://openalex.org/W1651029686'], 'abstract_inverted_index': {'1.1.': [0], 'Background.': [1], 'Toric': [2], 'varieties': [3, 164, 201], 'admit': [4], 'a': [5, 102, 109, 121, 152, 177, 189, 209, 247, 263, 317, 344, 347], 'combinatorial': [6, 18, 60], 'description,': [7], 'which': [8], 'allows': [9], 'many': [10], 'invariants': [11], 'to': [12, 71, 84, 120, 239], 'be': [13, 151], 'expressed': [14], 'in': [15, 36, 75, 89, 91, 111, 147, 165, 217, 319], 'terms': [16, 37, 92], 'of': [17, 32, 38, 93, 124, 133, 141, 144, 156, 199, 212, 276, 346, 349, 373], 'data.': [19, 61], 'Batyrev': [20], '[Ba2]': [21], 'and': [22, 24, 41, 45, 49, 114, 137, 188, 271, 308, 336, 368], 'Morrison': [23], 'Plesser': [25], '[MP]': [26], 'describe': [27], 'the': [28, 59, 63, 76, 94, 131, 160, 170, 184, 197, 224, 371], 'quantum': [29, 77], 'cohomology': [30, 73, 78, 87, 145], 'rings': [31], 'certain': [33, 122], 'toric': [34, 125, 154, 200, 272, 279], 'varieties,': [35], 'generators': [39, 136, 269, 290, 375], '(divisors': [40], 'formal': [42, 115], 'q': [43, 116], 'variables)': [44], 'relations': [46, 48, 54, 64], '(linear': [47], 'q-deformed': [50], 'monomial': [51], 'relations).': [52], 'The': [53, 227], 'are': [55, 168, 206, 229], 'easily': [56], 'obtained': [57], 'from': [58], 'Unfortunately,': [62], 'alone': [65], 'do': [66], 'not': [67], 'tell': [68], 'us': [69], 'how': [70, 83], 'multiply': [72], 'classes': [74, 88, 113, 146], 'ring': [79], 'QH∗(X),': [80], 'or': [81], 'even': [82], 'express': [85], 'ordinary': [86], 'H∗(X,Q)': [90], 'given': [95, 353], 'generators.': [96], 'In': [97, 237], 'this': [98, 166], 'paper,': [99], 'we': [100, 297], 'give': [101], 'formula': [103], 'that': [104, 231, 254, 354], 'expresses': [105], 'any': [106, 142], 'class': [107, 123], 'inH∗(X,Q)—as': [108], 'polynomial': [110], 'divisor': [112], 'variables—for': [117], 'anyX': [118], 'belonging': [119], 'varieties.': [126], 'These': [127], 'expressions,': [128], 'along': [129], 'with': [130, 180, 287], 'presentation': [132], 'QH∗(X)': [134], 'via': [135], 'relations,': [138], 'permit': [139], 'computation': [140], 'product': [143], 'QH∗(X).': [148], 'Let': [149], 'X': [150, 175, 205, 323, 332, 355, 358, 362], 'complete': [153], 'variety': [155, 179], 'dimension': [157], 'n': [158], 'over': [159, 169], 'complex': [161, 171], 'numbers': [162], '(all': [163], 'paper': [167], 'numbers).': [172], 'This': [173], 'means': [174], 'is': [176, 223, 246, 262, 333, 341, 356, 359, 376], 'normal': [178], 'an': [181], 'action': [182], 'by': [183, 208, 234, 343], 'algebraic': [185], 'torus': [186], '(C∗)n': [187, 193], 'dense': [190], 'equivariant': [191], 'embedding': [192], '→': [194], 'X.': [195, 277], 'By': [196], 'theory': [198], '(cf.': [202], '[F]),': [203], 'such': [204, 253, 267], 'characterized': [207], 'fan': [210], '∆': [211], 'strongly': [213], 'convex': [214], 'polyhedral': [215], 'cones': [216, 228], 'N': [218, 222, 252, 350], '⊗Z': [219], 'R,': [220], 'where': [221], 'lattice': [225, 235], 'Z.': [226], 'rational,': [230], 'is,': [232], 'generated': [233, 342], 'points.': [236], 'particular,': [238], 'every': [240, 339], 'ray': [241, 268, 289, 374], '(1-dimensional': [242], 'cone)': [243], 'σ': [244, 255], 'there': [245], 'unique': [248], 'generator': [249], 'ρ': [250, 270], '∈': [251], '∩N': [256], '=': [257], 'Z>0': [258], '·': [259, 301, 302, 303], 'ρ.': [260], 'There': [261], 'one-to-one': [264], 'correspondence': [265], 'between': [266], '(i.e.,': [273, 361], 'torus-invariant)': [274], 'divisors': [275, 280], 'Given': [278], 'D1,': [281], '.': [282, 283, 284, 292, 293, 294, 312, 313], ',': [285, 295], 'Dk,': [286], 'corresponding': [288], 'ρ1,': [291, 311], 'ρk,': [296], 'have': [298], 'D1': [299], '∩': [300], '∩Dk': [304], '6=': [305], '∅': [306], 'if': [307, 310, 335, 338, 367, 370], 'only': [309, 337, 369], '.,': [314], 'ρk': [315], 'span': [316], 'cone': [318, 340], '∆.': [320], 'Hypotheses': [321], 'on': [322, 329], 'translate': [324], 'as': [325], 'follows': [326], 'into': [327], 'conditions': [328], '∆:': [330], '(i)': [331], 'nonsingular': [334], 'part': [345], 'Z-basis': [348], ';': [351], '(ii)': [352], 'nonsingular:': [357], 'Fano': [360], 'has': [363], 'ample': [364], 'anticanonical': [365], 'class)': [366], 'set': [372], 'strictly': [377], 'convex.': [378]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2084206311', 'counts_by_year': [], 'updated_date': '2024-12-08T19:46:00.988881', 'created_date': '2016-06-24'}