AILBRY - Article Search
Serach over 250 million academic articles from all areas of study
Results for 'Emmanuel Lesaffre'
:
Statistical and Methodological Aspects of Oral Health Research
Publication Year: 2009
DOI: https://doi.org/10.1002/9780470744116
Abstract:
Add to Library
Authors:
<i>Bayesian Biostatistics</i>, by Emmanuel Lesaffre and Andrew B. Lawson, John Wiley & Sons, 2012
Publication Year: 2013
DOI: https://doi.org/10.1080/10543406.2013.789819
Abstract:
Add to Library
Authors:
EFFECT OF DROPOUTS IN A LONGITUDINAL STUDY: AN APPLICATION OF A REPEATED ORDINAL MODEL
Publication Year: 1996
DOI: https://doi.org/10.1002/(sici)1097-0258(19960615)15:11<1123::aid-sim228>3.0.co;2-l
Abstract:
Add to Library
Authors:
Emmanuel Lesaffre
Geert Molenberghs
L Dewulf
Disease Mapping and Risk Assessment for Public Health. Andrew Lawson, Annibale Biggeri, Dankmar Böhning, Emmanuel Lesaffre, Jean‐Francois Viel and Roberto Bertollini (eds), Wiley, Chichester, 1999. No. of pages: xix+482. Price: £ 60. ISBN 0‐471‐98634‐8
Publication Year: 2001
DOI: https://doi.org/10.1002/sim.896
Abstract:
Add to Library
Authors:
Survival Analysis with Interval-Censored Data
Publication Year: 2017
DOI: https://doi.org/10.1201/9781315116945
Abstract:
Add to Library
Authors:
Kris Bogaerts
Arnošt Komárek
Emmanuel Lesaffre
Models for Discrete Longitudinal Data
Publication Year: 2005
DOI: https://doi.org/10.1007/0-387-28980-1
Abstract:
Add to Library
Authors:
Geert Molenberghs
Geert Verbeke
Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS
Publication Year: 2017
DOI: DOI not
available
Abstract:
Add to Library
Authors:
Kris Bogaerts
Arnošt Komárek
Emmanuel Lesaffre
Bayesian analysis of longitudinal ordered data with flexible random effects using McMC: application to diabetic macular Edema data
Publication Year: 2011
DOI: https://doi.org/10.1080/02664763.2011.638367
Abstract:
Add to Library
Authors:
Marjan Mansourian
Anoshirvan Kazemnejad
Iraj Kazemi
Farid Zayeri
Masoud Soheilian
A note on non-parametric ANCOVA for covariate adjustment in randomized clinical trials by Emmanuel Lesaffre and Stephen Senn,Statistics in Medicine 2003;22:3583–3596
Publication Year: 2005
DOI: https://doi.org/10.1002/sim.1937
Abstract:
Add to Library
Authors:
Marginalized multilevel models and likelihood inference (with comments and a rejoinder by the authors)
Publication Year: 2000
DOI: https://doi.org/10.1214/ss/1009212671
Abstract:
Add to Library
Authors:
Patrick J. Heagerty
Scott L. Zeger
Multivariate Ordinal Data, Marginal Likelihood Models for
Publication Year: 2014
DOI: https://doi.org/10.1002/9781118445112.stat00358
Abstract:
Add to Library
Authors:
Emmanuel Lesaffre
Geert Molenberghs
Change from baseline and analysis of covariance revisited
Publication Year: 2006
DOI: https://doi.org/10.1002/sim.2682
Abstract:
Add to Library
Authors:
Factors associated with prevalence and severity of caries experience in preschool children
Publication Year: 2007
DOI: https://doi.org/10.1111/j.1600-0528.2007.00385.x
Abstract:
Add to Library
Authors:
Dominique Declerck
Roos Leroy
Luc Martens
Emmanuel Lesaffre
M.J. García-Zattera
Stephan Vanden Broucke
Martine Debyser
Karel Hoppenbrouwers
Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns)
Publication Year: 2017
DOI: https://doi.org/10.1016/s0140-6736(17)31444-7
Abstract:
Add to Library
Authors:
Martin Stocker
Wendy van Herk
Salhab el Helou
Sourabh Dutta
Matteo Fontana
Frank A. B. A. Schuerman
Rita K. van den Tooren-de Groot
Jantien W. Wieringa
Jan Janota
Laura H van der Meer-Kappelle
Rob Moonen
Sintha D. Sie
Esther de Vries
Albertine E. Donker
Urs Zimmerman
Luregn J. Schlapbach
Amerik C. de Mol
Angelique Hoffman-Haringsma
Madan Roy
Maren Tomaske
René F. Kornelisse
Juliette van Gijsel
Eline G. Visser
Sten P. Willemsen
Annemarie M. C. van Rossum
Ahmed K. Bakry
Sourabh Dutta
Salhab el Helou
Kaarthigeyan Kalaniti
David Pogorzelski
S Alliston
M Roy
Vijaylaxmi Grey
Kristin Hauff
S. L. Hill
Saranya Kittanakom
Jan Janota
Magda Višňovská
Matteo Fontana
N Lanz
Martin Stocker
D Glauser
Urs Zimmerman
Maren Tomaske
Mathias Nelle
Luregn J. Schlapbach
FABA Schuerman
SD Sie
Mirjam M. van Weissenbruch
FAM van den Dungen
Marc Strik
HK van den Tooren-de
Groot A van Rossum
Manou R. Batstra
LH van der Meer-Kappelle
Esther de Vries
AC de Mol
J Bolt-Wieringa
Daniel Stok
Rob Moonen
Sarah Donker
Juliette van Gijsel
IPE Gondriet
Wendy van Herk
S Hoekstein
M Hofhuis
WCJ Hop
L de Ligt
B Manai
René F. Kornelisse
YB de Rijke
Annemarie M. C. van Rossum
Satu J. Siiskonen
Jolanda van der Velden
E Visser
J Asch van Wijk
Sten P. Willemsen
GJ van der Geijn
Angelique Haringsma
Peter Andriessen
MAC Broeren
Albertine E. Donker
A Linear Mixed-Effects Model With Heterogeneity in the Random-Effects Population
Publication Year: 1996
DOI: https://doi.org/10.2307/2291398
Abstract:
Add to Library
Authors:
Geert Verbeke
Emmanuel Lesaffre
Found 99 results in 0.075 seconds
What is Boolean Searches
Including any of the words AND
, OR
, or NOT
in any of your searches will enable
boolean search. Those words must be UPPERCASE . You can use this in all searches, including using
the search parameter, and using search filters.
This allows you to craft complex queries using those boolean operators along with parentheses and quotation marks.
Surrounding a phrase with quotation marks will search for an exact match of that phrase, after stemming and
stop-word removal (be sure to use double quotation marks — "
). Using parentheses will specify order of
operations for the boolean operators. Words that are not separated by one of the boolean operators will be
interpreted as AND
.
Behind the scenes, the boolean search is using Elasticsearch's query string query on the searchable fields (such as
title, abstract, and fulltext for works; see each individual entity page for specifics about that entity). Wildcard
and fuzzy searches using *
, ?
or ~
are not allowed; these characters will be
removed from any searches. These searches, even when using quotation marks, will go through the same cleaning as
described above, including stemming and removal of stop words.
Example Search
Search for works that mention "elmo"
and "sesame street"
, but not the words
"cookie"
or "monster"
:
"elmo" AND "sesame street" NOT "cookie" NOT "monster"