Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W81575802', 'doi': None, 'title': 'Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms.', 'display_name': 'Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms.', 'publication_year': 2007, 'publication_date': '2007-01-01', 'ids': {'openalex': 'https://openalex.org/W81575802', 'mag': '81575802'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'http://homepage.cs.uri.edu/faculty/hamel/pubs/DMI5471-svm.pdf', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306508216', 'display_name': 'DMIN', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': [], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5004430430', 'display_name': 'Scott Pion', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I17626003', 'display_name': 'University of Rhode Island', 'ror': 'https://ror.org/013ckk937', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I17626003']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Scott Pion', 'raw_affiliation_strings': ['University Of Rhode Island#TAB#'], 'affiliations': [{'raw_affiliation_string': 'University Of Rhode Island#TAB#', 'institution_ids': ['https://openalex.org/I17626003']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5036899984', 'display_name': 'Lutz Hamel', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Lutz Hamel', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.0, 'has_fulltext': False, 'cited_by_count': 1, 'citation_normalized_percentile': {'value': 0.759524, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 63, 'max': 70}, 'biblio': {'volume': None, 'issue': None, 'first_page': '79', 'last_page': '83'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10538', 'display_name': 'Data Mining Algorithms and Applications', 'score': 0.9988, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10538', 'display_name': 'Data Mining Algorithms and Applications', 'score': 0.9988, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11719', 'display_name': 'Data Quality and Management', 'score': 0.9877, 'subfield': {'id': 'https://openalex.org/subfields/1803', 'display_name': 'Management Science and Operations Research'}, 'field': {'id': 'https://openalex.org/fields/18', 'display_name': 'Decision Sciences'}, 'domain': {'id': 'https://openalex.org/domains/2', 'display_name': 'Social Sciences'}}, {'id': 'https://openalex.org/T12205', 'display_name': 'Time Series Analysis and Forecasting', 'score': 0.9821, 'subfield': {'id': 'https://openalex.org/subfields/1711', 'display_name': 'Signal Processing'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/logistic-model-tree', 'display_name': 'Logistic model tree', 'score': 0.61619246}], 'concepts': [{'id': 'https://openalex.org/C12267149', 'wikidata': 'https://www.wikidata.org/wiki/Q282453', 'display_name': 'Support vector machine', 'level': 2, 'score': 0.77930593}, {'id': 'https://openalex.org/C151956035', 'wikidata': 'https://www.wikidata.org/wiki/Q1132755', 'display_name': 'Logistic regression', 'level': 2, 'score': 0.7426853}, {'id': 'https://openalex.org/C124101348', 'wikidata': 'https://www.wikidata.org/wiki/Q172491', 'display_name': 'Data mining', 'level': 1, 'score': 0.63562983}, {'id': 'https://openalex.org/C61722155', 'wikidata': 'https://www.wikidata.org/wiki/Q6667643', 'display_name': 'Logistic model tree', 'level': 3, 'score': 0.61619246}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.57715213}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.5690013}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.54618675}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.4184393}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'http://homepage.cs.uri.edu/faculty/hamel/pubs/DMI5471-svm.pdf', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306508216', 'display_name': 'DMIN', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/8', 'score': 0.55, 'display_name': 'Decent work and economic growth'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 6, 'referenced_works': ['https://openalex.org/W1554663460', 'https://openalex.org/W1594031697', 'https://openalex.org/W2156909104', 'https://openalex.org/W2163757302', 'https://openalex.org/W3023786531', 'https://openalex.org/W3085162807'], 'related_works': ['https://openalex.org/W3204879874', 'https://openalex.org/W3148095850', 'https://openalex.org/W3115637534', 'https://openalex.org/W3093082906', 'https://openalex.org/W3038797613', 'https://openalex.org/W2975995112', 'https://openalex.org/W2964553505', 'https://openalex.org/W2952308379', 'https://openalex.org/W2950957880', 'https://openalex.org/W2911381491', 'https://openalex.org/W2890815702', 'https://openalex.org/W2796275851', 'https://openalex.org/W2769512634', 'https://openalex.org/W2617645529', 'https://openalex.org/W2575418680', 'https://openalex.org/W2573054881', 'https://openalex.org/W2369584837', 'https://openalex.org/W2085850115', 'https://openalex.org/W1748341622', 'https://openalex.org/W169159793'], 'abstract_inverted_index': {'This': [0], 'paper': [1], 'presents': [2], 'the': [3, 57, 68, 105], 'results': [4, 110], 'of': [5, 8, 17, 52], 'a': [6, 32, 50], 'series': [7, 51], 'analyses': [9, 41], 'performed': [10, 92, 101], 'on': [11, 133], 'direct': [12], 'mail': [13], 'data.': [14], 'A': [15], 'total': [16], '577': [18], 'features': [19], 'were': [20, 26, 42], 'used': [21, 38, 116, 128], 'to': [22, 29, 31, 129], 'identify': [23], 'individuals': [24], 'who': [25], 'most': [27], 'likely': [28], 'respond': [30], 'life': [33], 'insurance': [34], 'mailing.': [35], 'The': [36, 71, 109], 'tools': [37], 'for': [39], 'these': [40], 'support': [43], 'vector': [44], 'machines': [45], '(SVMs),': [46], 'logistic': [47, 78, 96, 99], 'regression,': [48, 77, 79, 97], 'and': [49, 81, 85, 98, 120, 123], 'algorithms': [53], 'employed': [54], 'automatically': [55], 'using': [56], 'integrated': [58], '“Affinium': [59], 'Model”': [60], '©': [61], 'data': [62, 72, 106], 'mining': [63, 73, 107], 'software': [64, 74], 'package': [65], 'produced': [66], 'by': [67], 'Unica': [69], 'Corporation.': [70], 'included': [75], 'linear': [76], 'classification': [80], 'regression': [82, 100], 'trees': [83], '(CART)': [84], 'neural': [86], 'networks.': [87], 'Results': [88], 'indicated': [89, 111], 'that': [90, 112, 124], 'SVMs': [91, 113, 125], 'slightly': [93, 102], 'better': [94, 103], 'than': [95, 104], 'tool.': [108], 'can': [114, 126], 'be': [115, 127], 'with': [117], 'very': [118], 'unbalanced': [119], 'noisy': [121], 'data,': [122], 'rank': [130], 'observations': [131], 'based': [132], 'likelihood.': [134]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W81575802', 'counts_by_year': [{'year': 2012, 'cited_by_count': 1}], 'updated_date': '2024-12-14T21:25:52.516504', 'created_date': '2016-06-24'}