Abstract:INTRODUCTION FUNDAMENTAL ASPECTS OF CORE LEVEL SPECTROSCOPIES Core holes Overview of core level spectroscopies Interaction of x-rays with matter Optical transition operators and x-ray absorption spect...INTRODUCTION FUNDAMENTAL ASPECTS OF CORE LEVEL SPECTROSCOPIES Core holes Overview of core level spectroscopies Interaction of x-rays with matter Optical transition operators and x-ray absorption spectrum The interaction of electrons with matter X-ray sources Electron sources MANY-BODY CHARGE-TRANSFER EFFECTS IN XPS AND XAS Introduction Many-body charge-transfer effects in XPS General expressions of many-body effects General effects in XPS spectra Typical examples of XPS spectra Many-body charge-transfer effects in XAS Comparison of XPS and XAS CHARGE TRANSFER MULTIPLET THEORY Atomic multiplet theory Ligand field multiplet theory The charge transfer multiplet theory X-RAY PHOTOEMISSION SPECTROSCOPY Introduction Experimental aspects XPS of TM compounds XPS of RE compounds Resonant photoemission spectroscopy Hard XPS Resonant inverse photoemission spectroscopy Nonlocal screening effect in XPS Auger photoemission coincidence spectroscopy Spin polarization and magnetic dichroism in XPS X-RAY ABSORPTION SPECTROSCOPY Basics of XAS Experimental aspects The L2, 3 edges of 3d TM systems Other x-ray absorption spectra of the 3d TM systems X-ray absorption spectra of the 4d and 5d TM systems X-ray absorption spectra of the 4f RE and 5f actinide systems X-RAY MAGNETIC CIRCULAR DICHROISM Introduction XMCD effects in the L2, 3 edges of TM ions and compounds Sum rules XMCD effects in the K edges of transition metals XMCD effects in the M edges of rare earths XMCD effects in the L edges of rare earth systems Applications of XMCD RESONANT X-RAY EMISSION SPECTROSCOPY Introduction Rare earth compounds High Tc Cuprates and related materials Nickel and Cobalt compounds Iron and Manganese compounds Early transition metal compounds Electron spin states detected by RXES and NXES MCD in RXES of ferromagnetic systems APPENDICES Precise derivation of XPS formula Derivation of Eq. (88) in Chapter 3 Fundamental tensor theory Derivation of the orbital moment sum rule Theoretical test of the spin sum rule Calculations of XAS spectra with single electron excitation models REFERENCES INDEXRead More
Publication Year: 2008
Publication Date: 2008-03-10
Language: en
Type: book
Indexed In: ['crossref']
Access and Citation
Cited By Count: 1136
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot
Abstract: INTRODUCTION FUNDAMENTAL ASPECTS OF CORE LEVEL SPECTROSCOPIES Core holes Overview of core level spectroscopies Interaction of x-rays with matter Optical transition operators and x-ray absorption spectrum The interaction of electrons with matter X-ray sources Electron sources MANY-BODY CHARGE-TRANSFER EFFECTS IN XPS AND XAS Introduction Many-body charge-transfer effects in XPS General expressions of many-body effects General effects in XPS spectra Typical examples of XPS spectra Many-body charge-transfer effects in XAS Comparison of XPS and XAS CHARGE TRANSFER MULTIPLET THEORY Atomic multiplet theory Ligand field multiplet theory The charge transfer multiplet theory X-RAY PHOTOEMISSION SPECTROSCOPY Introduction Experimental aspects XPS of TM compounds XPS of RE compounds Resonant photoemission spectroscopy Hard XPS Resonant inverse photoemission spectroscopy Nonlocal screening effect in XPS Auger photoemission coincidence spectroscopy Spin polarization and magnetic dichroism in XPS X-RAY ABSORPTION SPECTROSCOPY Basics of XAS Experimental aspects The L2, 3 edges of 3d TM systems Other x-ray absorption spectra of the 3d TM systems X-ray absorption spectra of the 4d and 5d TM systems X-ray absorption spectra of the 4f RE and 5f actinide systems X-RAY MAGNETIC CIRCULAR DICHROISM Introduction XMCD effects in the L2, 3 edges of TM ions and compounds Sum rules XMCD effects in the K edges of transition metals XMCD effects in the M edges of rare earths XMCD effects in the L edges of rare earth systems Applications of XMCD RESONANT X-RAY EMISSION SPECTROSCOPY Introduction Rare earth compounds High Tc Cuprates and related materials Nickel and Cobalt compounds Iron and Manganese compounds Early transition metal compounds Electron spin states detected by RXES and NXES MCD in RXES of ferromagnetic systems APPENDICES Precise derivation of XPS formula Derivation of Eq. (88) in Chapter 3 Fundamental tensor theory Derivation of the orbital moment sum rule Theoretical test of the spin sum rule Calculations of XAS spectra with single electron excitation models REFERENCES INDEX