Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W4380264255', 'doi': 'https://doi.org/10.53941/ijndi.2023.100005', 'title': 'FSS-Net: A Fast Search Structure for 3D Point Clouds in Deep Learning', 'display_name': 'FSS-Net: A Fast Search Structure for 3D Point Clouds in Deep Learning', 'publication_year': 2023, 'publication_date': '2023-06-12', 'ids': {'openalex': 'https://openalex.org/W4380264255', 'doi': 'https://doi.org/10.53941/ijndi.2023.100005'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.53941/ijndi.2023.100005', 'pdf_url': 'https://www.sciltp.com/journals/ijndi/article/download/257/130', 'source': {'id': 'https://openalex.org/S4387285992', 'display_name': 'International Journal of Network Dynamics and Intelligence', 'issn_l': '2653-6226', 'issn': ['2653-6226'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'hybrid', 'oa_url': 'https://www.sciltp.com/journals/ijndi/article/download/257/130', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100388777', 'display_name': 'Jiawei Wang', 'orcid': 'https://orcid.org/0000-0002-6893-0912'}, 'institutions': [{'id': 'https://openalex.org/I27357992', 'display_name': 'Dalian University of Technology', 'ror': 'https://ror.org/023hj5876', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I27357992']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Jiawei Wang', 'raw_affiliation_strings': ['Dalian University of Technology'], 'affiliations': [{'raw_affiliation_string': 'Dalian University of Technology', 'institution_ids': ['https://openalex.org/I27357992']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5009698718', 'display_name': 'Yan Zhuang', 'orcid': 'https://orcid.org/0000-0002-7640-4330'}, 'institutions': [{'id': 'https://openalex.org/I27357992', 'display_name': 'Dalian University of Technology', 'ror': 'https://ror.org/023hj5876', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I27357992']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Yan Zhuang', 'raw_affiliation_strings': ['School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China'], 'affiliations': [{'raw_affiliation_string': 'School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China', 'institution_ids': ['https://openalex.org/I27357992']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5005467310', 'display_name': 'Yisha Liu', 'orcid': 'https://orcid.org/0000-0003-2083-8612'}, 'institutions': [{'id': 'https://openalex.org/I43313876', 'display_name': 'Dalian Maritime University', 'ror': 'https://ror.org/002b7nr53', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I43313876']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Yisha Liu', 'raw_affiliation_strings': ['Information Science and Technology College, Dalian Maritime University, Dalian 116026, China'], 'affiliations': [{'raw_affiliation_string': 'Information Science and Technology College, Dalian Maritime University, Dalian 116026, China', 'institution_ids': ['https://openalex.org/I43313876']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 6.438, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 17, 'citation_normalized_percentile': {'value': 0.999905, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 97, 'max': 98}, 'biblio': {'volume': None, 'issue': None, 'first_page': '100005', 'last_page': '100005'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11211', 'display_name': '3D Surveying and Cultural Heritage', 'score': 0.9981, 'subfield': {'id': 'https://openalex.org/subfields/1907', 'display_name': 'Geology'}, 'field': {'id': 'https://openalex.org/fields/19', 'display_name': 'Earth and Planetary Sciences'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10481', 'display_name': 'Computer Graphics and Visualization Techniques', 'score': 0.9979, 'subfield': {'id': 'https://openalex.org/subfields/1704', 'display_name': 'Computer Graphics and Computer-Aided Design'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/net', 'display_name': 'Net (polyhedron)', 'score': 0.4391114}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.6967151}, {'id': 'https://openalex.org/C131979681', 'wikidata': 'https://www.wikidata.org/wiki/Q1899648', 'display_name': 'Point cloud', 'level': 2, 'score': 0.65355784}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.54110026}, {'id': 'https://openalex.org/C108583219', 'wikidata': 'https://www.wikidata.org/wiki/Q197536', 'display_name': 'Deep learning', 'level': 2, 'score': 0.50837296}, {'id': 'https://openalex.org/C89600930', 'wikidata': 'https://www.wikidata.org/wiki/Q1423946', 'display_name': 'Segmentation', 'level': 2, 'score': 0.4929595}, {'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.46103692}, {'id': 'https://openalex.org/C14166107', 'wikidata': 'https://www.wikidata.org/wiki/Q253829', 'display_name': 'Net (polyhedron)', 'level': 2, 'score': 0.4391114}, {'id': 'https://openalex.org/C2779343474', 'wikidata': 'https://www.wikidata.org/wiki/Q3109175', 'display_name': 'Context (archaeology)', 'level': 2, 'score': 0.43608373}, {'id': 'https://openalex.org/C54170458', 'wikidata': 'https://www.wikidata.org/wiki/Q663554', 'display_name': 'Voxel', 'level': 2, 'score': 0.42047063}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.41507736}, {'id': 'https://openalex.org/C140779682', 'wikidata': 'https://www.wikidata.org/wiki/Q210868', 'display_name': 'Sampling (signal processing)', 'level': 3, 'score': 0.41215765}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.17667267}, {'id': 'https://openalex.org/C205649164', 'wikidata': 'https://www.wikidata.org/wiki/Q1071', 'display_name': 'Geography', 'level': 0, 'score': 0.14943182}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.14816546}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C166957645', 'wikidata': 'https://www.wikidata.org/wiki/Q23498', 'display_name': 'Archaeology', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C106131492', 'wikidata': 'https://www.wikidata.org/wiki/Q3072260', 'display_name': 'Filter (signal processing)', 'level': 2, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.53941/ijndi.2023.100005', 'pdf_url': 'https://www.sciltp.com/journals/ijndi/article/download/257/130', 'source': {'id': 'https://openalex.org/S4387285992', 'display_name': 'International Journal of Network Dynamics and Intelligence', 'issn_l': '2653-6226', 'issn': ['2653-6226'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.53941/ijndi.2023.100005', 'pdf_url': 'https://www.sciltp.com/journals/ijndi/article/download/257/130', 'source': {'id': 'https://openalex.org/S4387285992', 'display_name': 'International Journal of Network Dynamics and Intelligence', 'issn_l': '2653-6226', 'issn': ['2653-6226'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/4', 'display_name': 'Quality education', 'score': 0.46}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 36, 'referenced_works': ['https://openalex.org/W2211722331', 'https://openalex.org/W2556802233', 'https://openalex.org/W2560609797', 'https://openalex.org/W2563408008', 'https://openalex.org/W2888754481', 'https://openalex.org/W2896992394', 'https://openalex.org/W2953399169', 'https://openalex.org/W2960986959', 'https://openalex.org/W2962731536', 'https://openalex.org/W2962928871', 'https://openalex.org/W2963046128', 'https://openalex.org/W2963053547', 'https://openalex.org/W2963125977', 'https://openalex.org/W2963226018', 'https://openalex.org/W2963231572', 'https://openalex.org/W2963509914', 'https://openalex.org/W2963719584', 'https://openalex.org/W2963727135', 'https://openalex.org/W2963830382', 'https://openalex.org/W2964253930', 'https://openalex.org/W2964266557', 'https://openalex.org/W2979750740', 'https://openalex.org/W2980535048', 'https://openalex.org/W2990613095', 'https://openalex.org/W2991216808', 'https://openalex.org/W3012494314', 'https://openalex.org/W3034239841', 'https://openalex.org/W3034324855', 'https://openalex.org/W3034430142', 'https://openalex.org/W3034482224', 'https://openalex.org/W3035275207', 'https://openalex.org/W3109154950', 'https://openalex.org/W3137210930', 'https://openalex.org/W3181190968', 'https://openalex.org/W3186678659', 'https://openalex.org/W3197921038'], 'related_works': ['https://openalex.org/W4312417841', 'https://openalex.org/W4226493464', 'https://openalex.org/W3193565141', 'https://openalex.org/W3167935049', 'https://openalex.org/W3167885074', 'https://openalex.org/W3133861977', 'https://openalex.org/W3029198973', 'https://openalex.org/W3027020613', 'https://openalex.org/W2892386716', 'https://openalex.org/W2016533837'], 'abstract_inverted_index': {'Article': [0], 'FSS-Net:': [1], 'A': [2], 'Fast': [3], 'Search': [4], 'Structure': [5], 'for': [6], '3D': [7, 81], 'Point': [8], 'Clouds': [9], 'in': [10, 73, 247], 'Deep': [11], 'Learning': [12], 'Jiawei': [13], 'Wang': [14], '1,': [15], 'Yan': [16], 'Zhuang': [17], '1,*,': [18], 'and': [19, 28, 40, 77, 122, 144, 206, 227, 250, 267, 279], 'Yisha': [20], 'Liu': [21], '2,*': [22], '1': [23], 'School': [24], 'of': [25, 32, 79, 92, 97, 114, 222, 237, 255, 264], 'Control': [26], 'Science': [27, 39], 'Engineering,': [29], 'Dalian': [30, 34, 43, 46], 'University': [31], 'Technology,': [33], '116024,': [35], 'China': [36, 48], '2': [37], 'Information': [38], 'Technology': [41], 'College,': [42], 'Maritime': [44], 'University,': [45], '116026,': [47], '*': [49], 'Correspondence:': [50], '[email protected];': [51], '[email protected]': [52], 'Received:': [53], '5': [54, 58], 'April': [55], '2023': [56, 60, 64], 'Accepted:': [57], 'May': [59], 'Published:': [61], '23': [62], 'June': [63], 'Abstract:': [65], 'The': [66, 84, 117, 253, 270], 'deep': [67, 287], 'learning': [68, 288], 'methods': [69, 125, 208], 'achieve': [70], 'good': [71], 'results': [72, 272], 'the': [74, 80, 90, 94, 98, 101, 111, 131, 142, 146, 158, 163, 166, 171, 176, 189, 195, 203, 223, 228, 235, 238, 256, 265], 'semantic': [75], 'segmentation': [76], 'classification': [78], 'point': [82], 'clouds.': [83], 'popular': [85], 'convolutional': [86], 'neural': [87], 'networks': [88], 'illustrate': [89], 'importance': [91], 'using': [93], 'neighboring': [95, 102, 132], 'information': [96, 113], 'points.': [99], 'Searching': [100], 'points': [103], 'is': [104, 138, 168, 181, 260, 277], 'an': [105], 'important': [106], 'process': [107], 'that': [108, 263, 274], 'can': [109, 280], 'get': [110], 'context': [112], 'each': [115], 'point.': [116], 'K-nearest': [118], 'neighbor': [119], '(KNN)': [120], 'search': [121, 175, 216, 258], 'ball': [123, 268], 'query': [124], 'are': [126, 209], 'usually': [127], 'used': [128], 'to': [129, 140, 161, 169, 174, 183, 188, 199, 233, 284], 'find': [130], 'points,': [133], 'but': [134], 'a': [135, 154, 214, 244], 'long': [136], 'time': [137], 'required': [139], 'construct': [141], 'KD-tree': [143], 'calculate': [145], 'Euclidean': [147], 'distance.': [148], 'In': [149, 197, 231], 'this': [150, 185], 'work,': [151], 'we': [152, 212, 240], 'introduce': [153], 'fast': [155, 215], 'approach': [156, 259], '(called': [157], 'voxel': [159, 172, 257], 'search)': [160], 'finding': [162], 'neighbors,': [164], 'where': [165], 'key': [167], 'use': [170], 'coordinates': [173], 'neighbors': [177], 'directly.': [178], 'However,': [179], 'it': [180], 'difficult': [182], 'apply': [184], 'method': [186, 276], 'directly': [187, 282], 'general': [190], 'network': [191, 218], 'structure': [192, 217], 'such': [193], 'as': [194], 'U-net.': [196], 'order': [198, 232], 'improve': [200], 'its': [201], 'applicability,': [202], 'corresponding': [204], 'up-sampling': [205], 'down-sampling': [207], 'proposed.': [210], 'Additionally,': [211], 'propose': [213], '(FSS-net)': [219], 'which': [220], 'consists': [221], 'feature': [224], 'extraction': [225], 'layer': [226], 'sampling': [229], 'layer.': [230], 'demonstrate': [234], 'effectiveness': [236], 'FSS-net,': [239], 'conduct': [241], 'experiments': [242], 'on': [243], 'single': [245], 'object': [246], 'both': [248], 'indoor': [249], 'outdoor': [251], 'environments.': [252], 'speed': [254], 'compared': [261], 'with': [262], 'KNN': [266], 'query.': [269], 'experimental': [271], 'show': [273], 'our': [275], 'faster': [278], 'be': [281], 'applied': [283], 'any': [285], 'point-based': [286], 'networks.': [289]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W4380264255', 'counts_by_year': [{'year': 2024, 'cited_by_count': 13}, {'year': 2023, 'cited_by_count': 4}], 'updated_date': '2024-12-30T03:29:56.005963', 'created_date': '2023-06-12'}