Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W4309845446', 'doi': 'https://doi.org/10.3390/f13121976', 'title': 'Using Advanced Machine-Learning Algorithms to Estimate the Site Index of Masson Pine Plantations', 'display_name': 'Using Advanced Machine-Learning Algorithms to Estimate the Site Index of Masson Pine Plantations', 'publication_year': 2022, 'publication_date': '2022-11-23', 'ids': {'openalex': 'https://openalex.org/W4309845446', 'doi': 'https://doi.org/10.3390/f13121976'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.3390/f13121976', 'pdf_url': 'https://www.mdpi.com/1999-4907/13/12/1976/pdf?version=1669196780', 'source': {'id': 'https://openalex.org/S71324801', 'display_name': 'Forests', 'issn_l': '1999-4907', 'issn': ['1999-4907'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310310987', 'host_organization_name': 'Multidisciplinary Digital Publishing Institute', 'host_organization_lineage': ['https://openalex.org/P4310310987'], 'host_organization_lineage_names': ['Multidisciplinary Digital Publishing Institute'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'doaj'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'https://www.mdpi.com/1999-4907/13/12/1976/pdf?version=1669196780', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5064592042', 'display_name': 'Rui Yang', 'orcid': 'https://orcid.org/0000-0002-8268-1561'}, 'institutions': [{'id': 'https://openalex.org/I31683504', 'display_name': 'Beijing Forestry University', 'ror': 'https://ror.org/04xv2pc41', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I1327237609', 'https://openalex.org/I31683504', 'https://openalex.org/I4210127390']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Rui Yang', 'raw_affiliation_strings': ['Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, China'], 'affiliations': [{'raw_affiliation_string': 'Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, China', 'institution_ids': ['https://openalex.org/I31683504']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5053993731', 'display_name': 'Jinghui Meng', 'orcid': 'https://orcid.org/0000-0002-1548-7486'}, 'institutions': [{'id': 'https://openalex.org/I31683504', 'display_name': 'Beijing Forestry University', 'ror': 'https://ror.org/04xv2pc41', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I1327237609', 'https://openalex.org/I31683504', 'https://openalex.org/I4210127390']}], 'countries': ['CN'], 'is_corresponding': True, 'raw_author_name': 'Jinghui Meng', 'raw_affiliation_strings': ['Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, China'], 'affiliations': [{'raw_affiliation_string': 'Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083, China', 'institution_ids': ['https://openalex.org/I31683504']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5053993731'], 'corresponding_institution_ids': ['https://openalex.org/I31683504'], 'apc_list': {'value': 2000, 'currency': 'CHF', 'value_usd': 2165, 'provenance': 'doaj'}, 'apc_paid': {'value': 2000, 'currency': 'CHF', 'value_usd': 2165, 'provenance': 'doaj'}, 'fwci': 1.31, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 5, 'citation_normalized_percentile': {'value': 0.699769, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 83, 'max': 85}, 'biblio': {'volume': '13', 'issue': '12', 'first_page': '1976', 'last_page': '1976'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11880', 'display_name': 'Forest ecology and management', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2309', 'display_name': 'Nature and Landscape Conservation'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11880', 'display_name': 'Forest ecology and management', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2309', 'display_name': 'Nature and Landscape Conservation'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10266', 'display_name': 'Plant Water Relations and Carbon Dynamics', 'score': 0.9932, 'subfield': {'id': 'https://openalex.org/subfields/2306', 'display_name': 'Global and Planetary Change'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11164', 'display_name': 'Remote Sensing and LiDAR Applications', 'score': 0.9929, 'subfield': {'id': 'https://openalex.org/subfields/2305', 'display_name': 'Environmental Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/gradient-boosting', 'display_name': 'Gradient boosting', 'score': 0.64253056}, {'id': 'https://openalex.org/keywords/boosting', 'display_name': 'Boosting', 'score': 0.595127}, {'id': 'https://openalex.org/keywords/extreme-learning-machine', 'display_name': 'Extreme Learning Machine', 'score': 0.47668672}, {'id': 'https://openalex.org/keywords/cross-validation', 'display_name': 'Cross-validation', 'score': 0.4175739}], 'concepts': [{'id': 'https://openalex.org/C139945424', 'wikidata': 'https://www.wikidata.org/wiki/Q1940696', 'display_name': 'Mean squared error', 'level': 2, 'score': 0.86340547}, {'id': 'https://openalex.org/C169258074', 'wikidata': 'https://www.wikidata.org/wiki/Q245748', 'display_name': 'Random forest', 'level': 2, 'score': 0.719131}, {'id': 'https://openalex.org/C128990827', 'wikidata': 'https://www.wikidata.org/wiki/Q192830', 'display_name': 'Coefficient of determination', 'level': 2, 'score': 0.6626481}, {'id': 'https://openalex.org/C70153297', 'wikidata': 'https://www.wikidata.org/wiki/Q5591907', 'display_name': 'Gradient boosting', 'level': 3, 'score': 0.64253056}, {'id': 'https://openalex.org/C46686674', 'wikidata': 'https://www.wikidata.org/wiki/Q466303', 'display_name': 'Boosting (machine learning)', 'level': 2, 'score': 0.595127}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.5497457}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.53436124}, {'id': 'https://openalex.org/C48921125', 'wikidata': 'https://www.wikidata.org/wiki/Q10861030', 'display_name': 'Linear regression', 'level': 2, 'score': 0.51643735}, {'id': 'https://openalex.org/C2780150128', 'wikidata': 'https://www.wikidata.org/wiki/Q21948731', 'display_name': 'Extreme learning machine', 'level': 3, 'score': 0.47668672}, {'id': 'https://openalex.org/C83546350', 'wikidata': 'https://www.wikidata.org/wiki/Q1139051', 'display_name': 'Regression', 'level': 2, 'score': 0.47322264}, {'id': 'https://openalex.org/C152877465', 'wikidata': 'https://www.wikidata.org/wiki/Q208042', 'display_name': 'Regression analysis', 'level': 2, 'score': 0.43368304}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.4186159}, {'id': 'https://openalex.org/C27181475', 'wikidata': 'https://www.wikidata.org/wiki/Q541014', 'display_name': 'Cross-validation', 'level': 2, 'score': 0.4175739}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.38068318}, {'id': 'https://openalex.org/C159390177', 'wikidata': 'https://www.wikidata.org/wiki/Q9161265', 'display_name': 'Soil science', 'level': 1, 'score': 0.360568}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.24754488}, {'id': 'https://openalex.org/C39432304', 'wikidata': 'https://www.wikidata.org/wiki/Q188847', 'display_name': 'Environmental science', 'level': 0, 'score': 0.22059864}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.094733596}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.3390/f13121976', 'pdf_url': 'https://www.mdpi.com/1999-4907/13/12/1976/pdf?version=1669196780', 'source': {'id': 'https://openalex.org/S71324801', 'display_name': 'Forests', 'issn_l': '1999-4907', 'issn': ['1999-4907'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310310987', 'host_organization_name': 'Multidisciplinary Digital Publishing Institute', 'host_organization_lineage': ['https://openalex.org/P4310310987'], 'host_organization_lineage_names': ['Multidisciplinary Digital Publishing Institute'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://doaj.org/article/fe2ce0f5982644af984981f490514be8', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306401280', 'display_name': 'DOAJ (DOAJ: Directory of Open Access Journals)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.3390/f13121976', 'pdf_url': 'https://www.mdpi.com/1999-4907/13/12/1976/pdf?version=1669196780', 'source': {'id': 'https://openalex.org/S71324801', 'display_name': 'Forests', 'issn_l': '1999-4907', 'issn': ['1999-4907'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310310987', 'host_organization_name': 'Multidisciplinary Digital Publishing Institute', 'host_organization_lineage': ['https://openalex.org/P4310310987'], 'host_organization_lineage_names': ['Multidisciplinary Digital Publishing Institute'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 84, 'referenced_works': ['https://openalex.org/W1187254890', 'https://openalex.org/W1249024678', 'https://openalex.org/W1797672601', 'https://openalex.org/W1964396812', 'https://openalex.org/W1968853774', 'https://openalex.org/W1981984691', 'https://openalex.org/W1982997662', 'https://openalex.org/W1986497016', 'https://openalex.org/W1991031719', 'https://openalex.org/W2003746986', 'https://openalex.org/W2008084458', 'https://openalex.org/W2009897342', 'https://openalex.org/W2011564790', 'https://openalex.org/W2012456614', 'https://openalex.org/W2016500502', 'https://openalex.org/W2020480002', 'https://openalex.org/W2022597722', 'https://openalex.org/W2023155255', 'https://openalex.org/W2037155376', 'https://openalex.org/W2038806022', 'https://openalex.org/W2044481392', 'https://openalex.org/W2045622009', 'https://openalex.org/W2057651406', 'https://openalex.org/W2064066703', 'https://openalex.org/W2070230130', 'https://openalex.org/W2075215712', 'https://openalex.org/W2078556726', 'https://openalex.org/W2078911297', 'https://openalex.org/W2079382574', 'https://openalex.org/W2089858485', 'https://openalex.org/W2115695808', 'https://openalex.org/W2116920396', 'https://openalex.org/W2118295263', 'https://openalex.org/W2118579327', 'https://openalex.org/W2118772143', 'https://openalex.org/W2126526565', 'https://openalex.org/W2126609780', 'https://openalex.org/W2132071515', 'https://openalex.org/W2135740120', 'https://openalex.org/W2141405323', 'https://openalex.org/W2169115316', 'https://openalex.org/W2177299793', 'https://openalex.org/W2180656199', 'https://openalex.org/W2295598076', 'https://openalex.org/W2322497767', 'https://openalex.org/W2325255514', 'https://openalex.org/W2335141921', 'https://openalex.org/W2360444600', 'https://openalex.org/W2366694354', 'https://openalex.org/W2466567730', 'https://openalex.org/W2490857001', 'https://openalex.org/W2530252498', 'https://openalex.org/W2583294145', 'https://openalex.org/W2593913845', 'https://openalex.org/W2601486059', 'https://openalex.org/W2739731340', 'https://openalex.org/W2744132087', 'https://openalex.org/W2768348081', 'https://openalex.org/W2783079852', 'https://openalex.org/W2793509150', 'https://openalex.org/W2898050226', 'https://openalex.org/W2911964244', 'https://openalex.org/W2917296284', 'https://openalex.org/W3018790373', 'https://openalex.org/W3036893550', 'https://openalex.org/W3045753344', 'https://openalex.org/W3048556290', 'https://openalex.org/W3081125651', 'https://openalex.org/W3087884268', 'https://openalex.org/W3097170121', 'https://openalex.org/W3110786237', 'https://openalex.org/W3111938808', 'https://openalex.org/W3125877605', 'https://openalex.org/W3127053039', 'https://openalex.org/W3128660131', 'https://openalex.org/W3130219998', 'https://openalex.org/W3159623433', 'https://openalex.org/W3159845116', 'https://openalex.org/W3166459169', 'https://openalex.org/W3173285793', 'https://openalex.org/W3183637089', 'https://openalex.org/W3195707102', 'https://openalex.org/W4226277510', 'https://openalex.org/W4236205193'], 'related_works': ['https://openalex.org/W4310492845', 'https://openalex.org/W4310224730', 'https://openalex.org/W4289703016', 'https://openalex.org/W3137904399', 'https://openalex.org/W3094138326', 'https://openalex.org/W2967733078', 'https://openalex.org/W2885778889', 'https://openalex.org/W2885516856', 'https://openalex.org/W2766514146', 'https://openalex.org/W1985505753'], 'abstract_inverted_index': {'The': [0, 55, 114, 123, 134, 165, 193, 226, 281, 293], 'rapid': [1], 'development': [2], 'of': [3, 42, 50, 52, 57, 65, 106, 112, 160, 176, 181, 185, 191, 208, 271, 289, 301], 'non-parametric': [4], 'machine': [5, 22], 'learning': [6], 'methods,': [7, 248], 'such': [8], 'as': [9], 'random': [10], 'forest': [11], '(RF),': [12], 'extreme': [13], 'gradient': [14, 20], 'boosting': [15, 21], '(XGBoost),': [16], 'and': [17, 45, 69, 92, 109, 157, 169, 188, 242, 249, 260, 274], 'the': [18, 29, 63, 70, 82, 100, 103, 107, 121, 127, 131, 143, 149, 158, 198, 203, 206, 209, 214, 217, 230, 246, 252, 265, 268, 272, 275, 290, 298], 'light': [19], '(LightGBM),': [23], 'provide': [24], 'new': [25], 'methods': [26, 38], 'to': [27, 61, 98, 119, 212, 264, 277], 'predict': [28, 120], 'site': [30, 256, 279], 'index': [31], '(SI).': [32], 'However,': [33], 'few': [34], 'studies': [35], 'used': [36, 78, 91, 118], 'these': [37], 'for': [39, 297], 'SI': [40, 218, 235, 273, 285, 291], 'modeling': [41, 67], 'Masson': [43, 283, 304], 'pine,': [44], 'there': [46], 'is': [47, 232, 295], 'a': [48, 220], 'lack': [49], 'comparison': [51], 'model': [53, 116, 129, 166, 266, 286, 294], 'performances.': [54], 'purpose': [56], 'this': [58], 'study': [59], 'was': [60, 90, 117, 140, 147, 154, 163, 223], 'compare': [62], 'performance': [64], 'different': [66, 75, 110], 'approaches': [68], 'variability': [71, 215], 'between': [72, 102], 'models': [73, 95], 'with': [74, 167], 'variables.': [76, 113], 'We': [77], '84': [79], 'samples': [80], 'from': [81], 'Guangxi': [83], 'Tropical': [84], 'Forestry': [85], 'Experimental': [86], 'Centre.': [87], 'Five-fold': [88], 'cross-validation': [89], 'linear': [93], 'regression': [94], 'were': [96, 197], 'established': [97], 'assess': [99], 'relationship': [101], 'dominant': [104], 'height': [105], 'stand': [108], 'types': [111], 'optimal': [115], 'SI.': [122], 'results': [124, 227], 'show': [125], 'that': [126, 229], 'LightGBM': [128, 231], 'had': [130, 173], 'highest': [132], 'accuracy.': [133], 'root': [135], 'mean': [136, 150], 'square': [137], 'error': [138, 152], '(RMSE)': [139], '3.4055': [141], 'm,': [142, 156, 178, 187], 'relative': [144], 'RMSE': [145, 175], '(RMSE%)': [146], '20.95,': [148], 'absolute': [151], '(MAE)': [153], '2.4189': [155], 'coefficient': [159], 'determination': [161], '(R2)': [162], '0.5685.': [164], 'climatic': [168, 210], 'soil': [170, 194, 261], 'chemical': [171, 262], 'variables': [172, 263], 'an': [174, 179, 183, 189, 233], '2.7507': [177], 'RMSE%': [180], '17.18,': [182], 'MAE': [184], '2.0630': [186], 'R2': [190], '0.6720.': [192], 'physicochemical': [195], 'properties': [196], 'most': [199], 'important': [200], 'factors': [201, 211, 254], 'affecting': [202], 'SI,': [204], 'whereas': [205], 'ability': [207, 276], 'explain': [213], 'in': [216, 219], 'given': [221], 'range': [222], 'relatively': [224], 'low.': [225], 'indicate': [228], 'excellent': [234], 'estimation': [236], 'method.': [237], 'It': [238], 'has': [239], 'higher': [240], 'efficiency': [241], 'prediction': [243, 269], 'accuracy': [244, 270], 'than': [245], 'other': [247], 'it': [250], 'considers': [251], 'key': [253], 'determining': [255], 'productivity.': [257, 280], 'Adding': [258], 'climate': [259], 'improves': [267], 'evaluate': [278], 'proposed': [282], 'pine': [284, 305], 'explains': [287], '67.2%': [288], 'variability.': [292], 'suitable': [296], 'scientific': [299], 'management': [300], 'unevenly': [302], 'aged': [303], 'plantations.': [306]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W4309845446', 'counts_by_year': [{'year': 2024, 'cited_by_count': 4}, {'year': 2023, 'cited_by_count': 1}], 'updated_date': '2024-12-12T16:16:47.185153', 'created_date': '2022-11-29'}