Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W4301397691', 'doi': 'https://doi.org/10.3389/fpls.2022.1006292', 'title': 'Prediction approach of larch wood density from visible–near-infrared spectroscopy based on parameter calibrating and transfer learning', 'display_name': 'Prediction approach of larch wood density from visible–near-infrared spectroscopy based on parameter calibrating and transfer learning', 'publication_year': 2022, 'publication_date': '2022-10-04', 'ids': {'openalex': 'https://openalex.org/W4301397691', 'doi': 'https://doi.org/10.3389/fpls.2022.1006292', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/36267936'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.3389/fpls.2022.1006292', 'pdf_url': 'https://www.frontiersin.org/articles/10.3389/fpls.2022.1006292/pdf', 'source': {'id': 'https://openalex.org/S2493613807', 'display_name': 'Frontiers in Plant Science', 'issn_l': '1664-462X', 'issn': ['1664-462X'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320527', 'host_organization_name': 'Frontiers Media', 'host_organization_lineage': ['https://openalex.org/P4310320527'], 'host_organization_lineage_names': ['Frontiers Media'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'doaj', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'https://www.frontiersin.org/articles/10.3389/fpls.2022.1006292/pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100677556', 'display_name': 'Zheyu Zhang', 'orcid': 'https://orcid.org/0000-0003-0768-2713'}, 'institutions': [{'id': 'https://openalex.org/I47689461', 'display_name': 'Northeast Forestry University', 'ror': 'https://ror.org/02yxnh564', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I47689461']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Zheyu Zhang', 'raw_affiliation_strings': ['College of Engineering and Technology, Northeast Forestry University, Harbin, China'], 'affiliations': [{'raw_affiliation_string': 'College of Engineering and Technology, Northeast Forestry University, Harbin, China', 'institution_ids': ['https://openalex.org/I47689461']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5066177824', 'display_name': 'Yaoxiang Li', 'orcid': 'https://orcid.org/0000-0001-9200-1016'}, 'institutions': [{'id': 'https://openalex.org/I47689461', 'display_name': 'Northeast Forestry University', 'ror': 'https://ror.org/02yxnh564', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I47689461']}], 'countries': ['CN'], 'is_corresponding': True, 'raw_author_name': 'Yaoxiang Li', 'raw_affiliation_strings': ['College of Engineering and Technology, Northeast Forestry University, Harbin, China'], 'affiliations': [{'raw_affiliation_string': 'College of Engineering and Technology, Northeast Forestry University, Harbin, China', 'institution_ids': ['https://openalex.org/I47689461']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5100414175', 'display_name': 'Ying Li', 'orcid': 'https://orcid.org/0000-0002-2542-7460'}, 'institutions': [{'id': 'https://openalex.org/I120379545', 'display_name': 'Inner Mongolia Agricultural University', 'ror': 'https://ror.org/015d0jq83', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I120379545']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Ying Li', 'raw_affiliation_strings': ['College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China'], 'affiliations': [{'raw_affiliation_string': 'College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, China', 'institution_ids': ['https://openalex.org/I120379545']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': ['https://openalex.org/A5066177824'], 'corresponding_institution_ids': ['https://openalex.org/I47689461'], 'apc_list': {'value': 2950, 'currency': 'USD', 'value_usd': 2950, 'provenance': 'doaj'}, 'apc_paid': {'value': 2950, 'currency': 'USD', 'value_usd': 2950, 'provenance': 'doaj'}, 'fwci': 0.58, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 5, 'citation_normalized_percentile': {'value': 0.555701, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 83, 'max': 85}, 'biblio': {'volume': '13', 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11164', 'display_name': 'Remote Sensing and LiDAR Applications', 'score': 0.9986, 'subfield': {'id': 'https://openalex.org/subfields/2305', 'display_name': 'Environmental Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11164', 'display_name': 'Remote Sensing and LiDAR Applications', 'score': 0.9986, 'subfield': {'id': 'https://openalex.org/subfields/2305', 'display_name': 'Environmental Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T13568', 'display_name': 'Wood and Agarwood Research', 'score': 0.9947, 'subfield': {'id': 'https://openalex.org/subfields/1605', 'display_name': 'Organic Chemistry'}, 'field': {'id': 'https://openalex.org/fields/16', 'display_name': 'Chemistry'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12111', 'display_name': 'Industrial Vision Systems and Defect Detection', 'score': 0.9929, 'subfield': {'id': 'https://openalex.org/subfields/2209', 'display_name': 'Industrial and Manufacturing Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/overfitting', 'display_name': 'Overfitting', 'score': 0.8318186}, {'id': 'https://openalex.org/keywords/transfer-of-learning', 'display_name': 'Transfer of learning', 'score': 0.6016973}], 'concepts': [{'id': 'https://openalex.org/C22019652', 'wikidata': 'https://www.wikidata.org/wiki/Q331309', 'display_name': 'Overfitting', 'level': 3, 'score': 0.8318186}, {'id': 'https://openalex.org/C165838908', 'wikidata': 'https://www.wikidata.org/wiki/Q736777', 'display_name': 'Calibration', 'level': 2, 'score': 0.755983}, {'id': 'https://openalex.org/C150899416', 'wikidata': 'https://www.wikidata.org/wiki/Q1820378', 'display_name': 'Transfer of learning', 'level': 2, 'score': 0.6016973}, {'id': 'https://openalex.org/C139945424', 'wikidata': 'https://www.wikidata.org/wiki/Q1940696', 'display_name': 'Mean squared error', 'level': 2, 'score': 0.5889025}, {'id': 'https://openalex.org/C24939127', 'wikidata': 'https://www.wikidata.org/wiki/Q373499', 'display_name': 'Water content', 'level': 2, 'score': 0.52452385}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.512451}, {'id': 'https://openalex.org/C186060115', 'wikidata': 'https://www.wikidata.org/wiki/Q30336093', 'display_name': 'Biological system', 'level': 1, 'score': 0.5032367}, {'id': 'https://openalex.org/C2778551664', 'wikidata': 'https://www.wikidata.org/wiki/Q25618', 'display_name': 'Larch', 'level': 2, 'score': 0.48814994}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.4780377}, {'id': 'https://openalex.org/C43571822', 'wikidata': 'https://www.wikidata.org/wiki/Q599037', 'display_name': 'Near-infrared spectroscopy', 'level': 2, 'score': 0.44772628}, {'id': 'https://openalex.org/C22354355', 'wikidata': 'https://www.wikidata.org/wiki/Q422009', 'display_name': 'Partial least squares regression', 'level': 2, 'score': 0.44765812}, {'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.44593787}, {'id': 'https://openalex.org/C62649853', 'wikidata': 'https://www.wikidata.org/wiki/Q199687', 'display_name': 'Remote sensing', 'level': 1, 'score': 0.43601808}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.41786525}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.40337062}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.39534277}, {'id': 'https://openalex.org/C39432304', 'wikidata': 'https://www.wikidata.org/wiki/Q188847', 'display_name': 'Environmental science', 'level': 0, 'score': 0.37953267}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.32457775}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.23784691}, {'id': 'https://openalex.org/C127413603', 'wikidata': 'https://www.wikidata.org/wiki/Q11023', 'display_name': 'Engineering', 'level': 0, 'score': 0.099035025}, {'id': 'https://openalex.org/C18903297', 'wikidata': 'https://www.wikidata.org/wiki/Q7150', 'display_name': 'Ecology', 'level': 1, 'score': 0.08382633}, {'id': 'https://openalex.org/C120665830', 'wikidata': 'https://www.wikidata.org/wiki/Q14620', 'display_name': 'Optics', 'level': 1, 'score': 0.08137548}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C187320778', 'wikidata': 'https://www.wikidata.org/wiki/Q1349130', 'display_name': 'Geotechnical engineering', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C127313418', 'wikidata': 'https://www.wikidata.org/wiki/Q1069', 'display_name': 'Geology', 'level': 0, 'score': 0.0}], 'mesh': [], 'locations_count': 4, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.3389/fpls.2022.1006292', 'pdf_url': 'https://www.frontiersin.org/articles/10.3389/fpls.2022.1006292/pdf', 'source': {'id': 'https://openalex.org/S2493613807', 'display_name': 'Frontiers in Plant Science', 'issn_l': '1664-462X', 'issn': ['1664-462X'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320527', 'host_organization_name': 'Frontiers Media', 'host_organization_lineage': ['https://openalex.org/P4310320527'], 'host_organization_lineage_names': ['Frontiers Media'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://doaj.org/article/b3369ef3f9e64075a0dae4ee659a4fe9', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306401280', 'display_name': 'DOAJ (DOAJ: Directory of Open Access Journals)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577256', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/36267936', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.3389/fpls.2022.1006292', 'pdf_url': 'https://www.frontiersin.org/articles/10.3389/fpls.2022.1006292/pdf', 'source': {'id': 'https://openalex.org/S2493613807', 'display_name': 'Frontiers in Plant Science', 'issn_l': '1664-462X', 'issn': ['1664-462X'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320527', 'host_organization_name': 'Frontiers Media', 'host_organization_lineage': ['https://openalex.org/P4310320527'], 'host_organization_lineage_names': ['Frontiers Media'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/15', 'score': 0.73, 'display_name': 'Life on land'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 65, 'referenced_works': ['https://openalex.org/W1971284954', 'https://openalex.org/W2012038106', 'https://openalex.org/W2026469743', 'https://openalex.org/W2059448295', 'https://openalex.org/W2062634374', 'https://openalex.org/W2067816083', 'https://openalex.org/W2090435050', 'https://openalex.org/W2091015178', 'https://openalex.org/W2093498600', 'https://openalex.org/W2137664016', 'https://openalex.org/W2153491803', 'https://openalex.org/W2253429366', 'https://openalex.org/W2260574429', 'https://openalex.org/W2436632455', 'https://openalex.org/W2466508508', 'https://openalex.org/W2593332781', 'https://openalex.org/W2611655888', 'https://openalex.org/W2754254239', 'https://openalex.org/W2754394965', 'https://openalex.org/W2791303772', 'https://openalex.org/W2791405895', 'https://openalex.org/W2801492038', 'https://openalex.org/W2911620309', 'https://openalex.org/W2914331134', 'https://openalex.org/W2914836620', 'https://openalex.org/W2916091221', 'https://openalex.org/W2945144536', 'https://openalex.org/W2945543139', 'https://openalex.org/W2971927744', 'https://openalex.org/W2989676862', 'https://openalex.org/W2990623796', 'https://openalex.org/W2993134750', 'https://openalex.org/W2998932094', 'https://openalex.org/W3003493504', 'https://openalex.org/W3006618589', 'https://openalex.org/W3015746562', 'https://openalex.org/W3021172213', 'https://openalex.org/W3022585740', 'https://openalex.org/W3025532682', 'https://openalex.org/W3033818760', 'https://openalex.org/W3036610920', 'https://openalex.org/W3045696060', 'https://openalex.org/W3046055015', 'https://openalex.org/W3092667979', 'https://openalex.org/W3097346376', 'https://openalex.org/W3102870719', 'https://openalex.org/W3126031428', 'https://openalex.org/W3132859298', 'https://openalex.org/W3142722142', 'https://openalex.org/W3153636879', 'https://openalex.org/W3155886690', 'https://openalex.org/W3160967662', 'https://openalex.org/W3164176809', 'https://openalex.org/W3173833413', 'https://openalex.org/W3176274399', 'https://openalex.org/W3188840037', 'https://openalex.org/W3201347346', 'https://openalex.org/W3205772352', 'https://openalex.org/W3206857664', 'https://openalex.org/W3206899080', 'https://openalex.org/W3209804565', 'https://openalex.org/W3213625618', 'https://openalex.org/W3214274361', 'https://openalex.org/W3214319470', 'https://openalex.org/W4281783356'], 'related_works': ['https://openalex.org/W4390929683', 'https://openalex.org/W4362597605', 'https://openalex.org/W3158648238', 'https://openalex.org/W3115262167', 'https://openalex.org/W2393783382', 'https://openalex.org/W2091479930', 'https://openalex.org/W2085256839', 'https://openalex.org/W2046744435', 'https://openalex.org/W1975561281', 'https://openalex.org/W1574414179'], 'abstract_inverted_index': {'Wood': [0], 'density,': [1], 'as': [2, 285], 'a': [3, 30, 116, 169, 302], 'key': [4], 'indicator': [5], 'to': [6, 71, 101, 153, 183, 243, 317, 320], 'measure': [7], 'wood': [8, 16, 20, 37, 54, 110, 299], 'properties,': [9], 'is': [10], 'of': [11, 42, 96, 108, 134, 163, 205, 211, 229, 270, 324], 'weighty': [12], 'significance': [13], 'in': [14, 22, 53, 63, 112, 129, 150, 232], 'enhancing': [15], 'utilization': [17], 'and': [18, 32, 45, 61, 78, 93, 157, 177, 199, 202, 216, 235, 306], 'modifying': [19], 'properties': [21], 'sustainable': [23], 'forest': [24], 'management.': [25], 'Visible-near-infrared': [26], '(Vis-NIR)': [27], 'spectroscopy': [28], 'provides': [29], 'feasible': [31], 'efficient': [33], 'solution': [34], 'for': [35], 'obtaining': [36], 'density': [38, 111, 300], 'by': [39, 250], 'the': [40, 48, 68, 90, 97, 105, 146, 164, 178, 185, 190, 203, 212, 222, 244, 258, 268, 271, 274, 286, 293, 315], 'advantages': [41], 'its': [43], 'efficiency': [44], 'non-destructiveness.': [46], 'However,': [47], 'spectral': [49], 'responses': [50], 'are': [51], 'different': [52, 57, 113, 173, 194], 'products': [55], 'with': [56, 122, 172, 193, 278, 301], 'moisture': [58, 114, 174, 200, 283], 'content': [59, 175], 'conditions,': [60, 176], 'changes': [62], 'external': [64], 'factors': [65, 149], 'may': [66], 'cause': [67], 'regression': [69, 247], 'model': [70, 224, 248, 275, 295], 'fail.': [72], 'Although': [73], 'some': [74], 'calibration': [75, 124, 191, 197, 214, 263], 'transfer': [76, 84, 118, 215], 'methods': [77, 86], 'convolutional': [79], 'neural': [80], 'network': [81], '(CNN)-based': [82], 'deep': [83, 117], 'learning': [85, 119, 218], 'have': [87], 'been': [88], 'proposed,': [89], 'generalization': [91, 304], 'ability': [92, 305], 'prediction': [94, 106, 162, 187], 'accuracy': [95, 307], 'models': [98, 206], 'still': [99], 'need': [100], 'be': [102, 318], 'improved.': [103], 'For': [104], 'problem': [107], 'Vis-NIR': [109], 'contents,': [115, 201], 'hybrid': [120, 179, 223, 272], 'method': [121, 165, 180, 254], 'automatic': [123], 'capability': [125], '(Resnet1D-SVR-TrAdaBoost.R2)': [126], 'was': [127, 136, 166, 181, 207, 276, 310], 'proposed': [128], 'this': [130], 'study.': [131], 'The': [132], 'disadvantage': [133], 'overfitting': [135], 'avoided': [137], 'when': [138], 'CNN': [139], 'processes': [140], 'small': [141], 'sample': [142], 'data,': [143], 'which': [144, 256], 'considered': [145], 'complex': [147], 'exterior': [148], 'actual': [151], 'production': [152], 'enhance': [154], 'feature': [155], 'extraction': [156], 'migration': [158, 217], 'between': [159], 'samples.': [160], 'Density': [161], 'performed': [167], 'on': [168], 'larch': [170, 298], 'dataset': [171], 'found': [182], 'achieve': [184], 'best': [186, 259], 'results': [188], 'under': [189], 'samples': [192, 198, 279], 'target': [195, 287], 'domain': [196], 'performance': [204, 260], 'better': [208], 'than': [209], 'that': [210, 292], 'traditional': [213, 262], 'methods.': [219, 264], 'In': [220], 'particular,': [221], 'has': [225, 257], 'achieved': [226], 'an': [227], 'improvement': [228], 'about': [230], '0.1': [231], 'both': [233], 'R2': [234], 'root': [236], 'mean': [237], 'square': [238], 'error': [239], '(RMSE)': [240], 'values': [241], 'compared': [242], 'support': [245], 'vector': [246], 'transferred': [249], 'piecewise': [251], 'direct': [252], 'standardization': [253], '(SVR+PDS),': [255], 'among': [261], 'To': [265], 'further': [266], 'ascertain': [267], 'generalizability': [269], 'model,': [273], 'validated': [277], 'collected': [280], 'from': [281], 'mixed': [282], 'contents': [284], 'domain.': [288], 'Various': [289], 'experiments': [290], 'demonstrated': [291], 'Resnet1D-SVR-TrAdaBoost.R2': [294], 'could': [296], 'predict': [297, 321], 'high': [303], 'effectively': [308], 'but': [309], 'computation': [311], 'consuming.': [312], 'It': [313], 'showed': [314], 'potential': [316], 'extended': [319], 'other': [322], 'metrics': [323], 'wood.': [325]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W4301397691', 'counts_by_year': [{'year': 2024, 'cited_by_count': 2}, {'year': 2023, 'cited_by_count': 3}], 'updated_date': '2024-12-11T12:33:25.517072', 'created_date': '2022-10-05'}