Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W4294626646', 'doi': 'https://doi.org/10.29313/jrs.vi.721', 'title': 'Metode Regresi Probit Biner untuk Pemodelan Faktor-Faktor yang Mempengaruhi Diagnosis Penyakit Jantung', 'display_name': 'Metode Regresi Probit Biner untuk Pemodelan Faktor-Faktor yang Mempengaruhi Diagnosis Penyakit Jantung', 'publication_year': 2022, 'publication_date': '2022-07-08', 'ids': {'openalex': 'https://openalex.org/W4294626646', 'doi': 'https://doi.org/10.29313/jrs.vi.721'}, 'language': 'id', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.29313/jrs.vi.721', 'pdf_url': 'https://journals.unisba.ac.id/index.php/JRS/article/download/721/626', 'source': {'id': 'https://openalex.org/S4386621793', 'display_name': 'Jurnal Riset Statistika', 'issn_l': '2798-6578', 'issn': ['2798-6578'], 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'hybrid', 'oa_url': 'https://journals.unisba.ac.id/index.php/JRS/article/download/721/626', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5108743422', 'display_name': 'Hasna', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I4210150439', 'display_name': 'Bandung Islamic University', 'ror': 'https://ror.org/04tp6pr14', 'country_code': 'ID', 'type': 'education', 'lineage': ['https://openalex.org/I4210150439']}], 'countries': ['ID'], 'is_corresponding': False, 'raw_author_name': 'None Hasna', 'raw_affiliation_strings': ['Statistika, Universitas Islam Bandung'], 'affiliations': [{'raw_affiliation_string': 'Statistika, Universitas Islam Bandung', 'institution_ids': ['https://openalex.org/I4210150439']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5088270276', 'display_name': 'Anneke Iswani Achmad', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I4210150439', 'display_name': 'Bandung Islamic University', 'ror': 'https://ror.org/04tp6pr14', 'country_code': 'ID', 'type': 'education', 'lineage': ['https://openalex.org/I4210150439']}], 'countries': ['ID'], 'is_corresponding': False, 'raw_author_name': 'Anneke Iswani Achmad', 'raw_affiliation_strings': ['Statistika, Universitas Islam Bandung'], 'affiliations': [{'raw_affiliation_string': 'Statistika, Universitas Islam Bandung', 'institution_ids': ['https://openalex.org/I4210150439']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 2.45, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 6, 'citation_normalized_percentile': {'value': 0.830548, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 85, 'max': 87}, 'biblio': {'volume': None, 'issue': None, 'first_page': '28', 'last_page': '34'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T13373', 'display_name': 'Data Mining and Machine Learning Applications', 'score': 0.988, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T13373', 'display_name': 'Data Mining and Machine Learning Applications', 'score': 0.988, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T13559', 'display_name': 'Edcuational Technology Systems', 'score': 0.934, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T14495', 'display_name': 'Public Health and Nutrition', 'score': 0.9116, 'subfield': {'id': 'https://openalex.org/subfields/2735', 'display_name': 'Pediatrics, Perinatology and Child Health'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C67257552', 'wikidata': 'https://www.wikidata.org/wiki/Q635217', 'display_name': 'Probit model', 'level': 2, 'score': 0.63118565}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.5545727}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.5354609}, {'id': 'https://openalex.org/C151956035', 'wikidata': 'https://www.wikidata.org/wiki/Q1132755', 'display_name': 'Logistic regression', 'level': 2, 'score': 0.42895627}, {'id': 'https://openalex.org/C149782125', 'wikidata': 'https://www.wikidata.org/wiki/Q160039', 'display_name': 'Econometrics', 'level': 1, 'score': 0.33406755}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.29313/jrs.vi.721', 'pdf_url': 'https://journals.unisba.ac.id/index.php/JRS/article/download/721/626', 'source': {'id': 'https://openalex.org/S4386621793', 'display_name': 'Jurnal Riset Statistika', 'issn_l': '2798-6578', 'issn': ['2798-6578'], 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.29313/jrs.vi.721', 'pdf_url': 'https://journals.unisba.ac.id/index.php/JRS/article/download/721/626', 'source': {'id': 'https://openalex.org/S4386621793', 'display_name': 'Jurnal Riset Statistika', 'issn_l': '2798-6578', 'issn': ['2798-6578'], 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'score': 0.58, 'id': 'https://metadata.un.org/sdg/3', 'display_name': 'Good health and well-being'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 6, 'referenced_works': ['https://openalex.org/W2076983043', 'https://openalex.org/W2582196827', 'https://openalex.org/W3008585037', 'https://openalex.org/W3174422541', 'https://openalex.org/W4214485772', 'https://openalex.org/W4319063819'], 'related_works': ['https://openalex.org/W49761080', 'https://openalex.org/W4255816188', 'https://openalex.org/W4245490552', 'https://openalex.org/W4225152035', 'https://openalex.org/W3122758267', 'https://openalex.org/W2801649827', 'https://openalex.org/W2007980826', 'https://openalex.org/W1990269632', 'https://openalex.org/W1979597421', 'https://openalex.org/W1489285247'], 'abstract_inverted_index': {'Abstract.': [0], 'Regression': [1], 'analysis': [2, 161], 'is': [3, 26, 41, 46, 66, 81, 92, 110, 138, 156, 196], 'a': [4, 42, 82, 188, 199], 'method': [5], 'used': [6, 47, 93, 155], 'to': [7, 29, 48, 94, 139], 'explain': [8, 49], 'the': [9, 13, 18, 34, 50, 53, 63, 69, 85, 96, 107, 123, 141, 145, 153, 160, 170, 177, 191], 'functional': [10], 'relationship': [11, 51, 97], 'between': [12, 52, 98], 'response': [14, 54, 64, 100, 108], 'variable': [15, 20, 55, 65, 71, 101, 109], '(Y)': [16, 219], 'and': [17, 56, 102, 118, 127, 187], 'predictor': [19, 60, 70, 104], '(X).': [21, 223], 'But': [22], 'in': [23, 33, 190], 'reality,': [24], 'it': [25, 172], 'not': [27], 'uncommon': [28], 'use': [30], 'qualitative': [31, 67], 'data': [32, 113, 154, 158, 230, 301, 336, 340], 'form': [35, 83], 'of': [36, 84, 116, 135, 147, 164, 202], 'binary.': [37], 'Binary': [38], 'probit': [39, 79, 236, 272], 'regression': [40, 43], 'model': [44, 80, 90, 140, 240, 279], 'that': [45, 91, 143, 176], 'one': [57, 99], 'or': [58], 'more': [59], 'variables,': [61, 105], 'where': [62, 106], 'while': [68], 'can': [72, 173], 'be': [73, 174], 'quantitative': [74, 112], 'and/or': [75], 'qualitative.': [76], 'The': [77, 133], 'binary': [78, 111], 'Generalized': [86, 280], 'Linear': [87, 281], 'Model': [88, 271, 282], '(GLM)': [89, 283], 'analyze': [95], 'several': [103], 'with': [114, 198], 'values': [115], '0': [117, 306], '1.': [119, 308], 'Parameter': [120], 'estimation': [121], 'using': [122], 'Maximum': [124, 313], 'Likelihood': [125], 'method,': [126], 'solved': [128], 'by': [129], 'Newton': [130, 319], "Raphson's": [131], 'method.': [132], 'purpose': [134], 'this': [136, 151], 'study': [137], 'factors': [142, 179], 'influence': [144], 'diagnosis': [146, 330], 'heart': [148, 165, 184], 'disease.': [149], 'In': [150], 'thesis,': [152], 'secondary': [157], 'regarding': [159], '&': [162, 344], 'prediction': [163], 'attack': [166], 'datasets.': [167], 'Based': [168], 'on': [169], 'research,': [171], 'seen': [175], 'influencing': [178], 'are': [180], 'gender,': [181], 'cholesterol,': [182], 'maximum': [183], 'rate,': [185], 'angina,': [186, 363], 'decrease': [189], 'ST': [192], 'segment.': [193], 'Classification': [194], 'accuracy': [195], '79.21%': [197], 'misclassification': [200], 'value': [201], '20.79%.
': [203], 'Abstrak.': [204], 'Analisis': [205], 'regresi': [206, 241], 'merupakan': [207, 238, 274, 339], 'suatu': [208, 239], 'cara': [209], 'yang': [210, 232, 242, 284, 304, 328, 337, 354], 'digunakan': [211, 243, 285, 338], 'untuk': [212, 244, 286, 325], 'menjelaskan': [213, 245], 'hubungan': [214, 246, 288], 'fungsional': [215], 'antara': [216, 247, 289], 'variabel': [217, 221, 248, 254, 258, 263, 291, 295, 298], 'respon': [218, 249, 259, 292], 'dengan': [220, 250, 293, 317, 372], 'prediktor': [222, 264], 'Namun': [224], 'dalam': [225], 'kenyataan': [226], 'tidak': [227], 'jarang': [228], 'menggunakan': [229, 311], 'kualitatif': [231, 261], 'berbentuk': [233], 'biner.': [234], 'Regresi': [235], 'biner': [237, 273, 303], 'satu': [251, 276, 290], 'atau': [252, 269], 'lebih': [253], 'prediktor,': [255, 296], 'dimana': [256, 297], 'pada': [257], 'bersifat': [260, 266], 'sedangkan': [262], 'bisa': [265], 'kuantitatif': [267, 302], 'dan': [268, 307, 315, 364], 'kualitatif.': [270], 'salah': [275], 'bentuk': [277], 'dari': [278], 'menganalisis': [287], 'beberapa': [294], 'responnya': [299], 'berupa': [300], 'bernilai': [305], 'Estimasi': [309], 'parameter': [310], 'metode': [312, 318], 'Likelihood,': [314], 'diselesaikan': [316], 'Raphson.': [320], 'Tujuan': [321], 'penelitian': [322, 350], 'ini': [323], 'adalah': [324], 'pemodelan': [326], 'faktor-faktor': [327, 353], 'mempengaruhi': [329], 'penyakit': [331], 'jantung.': [332, 348], 'Pada': [333], 'skripsi': [334], 'ini,': [335], 'sekunder': [341], 'mengenai': [342], 'analisa': [343], 'dataset': [345], 'prediksi': [346], 'serangan': [347], 'Berdasarkan': [349], 'dapat': [351], 'diketahui': [352], 'mempengauhi': [355], 'yaitu': [356], 'jenis': [357], 'kelamin,': [358], 'kolesterol,': [359], 'detak': [360], 'jantung': [361], 'maksimum,': [362], 'penurunan': [365], 'segmen': [366], 'ST.': [367], 'Ketepatan': [368], 'klasifikasi': [369, 375], 'sebesar': [370], '79,21%': [371], 'nilai': [373], 'kesalahan': [374], '20,79%.': [376]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W4294626646', 'counts_by_year': [{'year': 2023, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 5}], 'updated_date': '2025-01-04T20:03:03.996001', 'created_date': '2022-09-05'}