Title: Ranks of abelian varieties and the full Mordell-Lang conjecture in dimension one
Abstract:Let $A$ be a non-zero abelian variety over a field $F$ that is not algebraic over a finite field. We prove that the rational rank of the abelian group $A(F)$ is infinite when $F$ is large in the sense...Let $A$ be a non-zero abelian variety over a field $F$ that is not algebraic over a finite field. We prove that the rational rank of the abelian group $A(F)$ is infinite when $F$ is large in the sense of Pop (also called ample). The main ingredient is a deduction of the 1-dimensional case of the relative Mordell-Lang conjecture from a result of R\"ossler.Read More