Abstract:This book explores unintentional learning from an information-processing perspective. What do people learn when they do not know that they are learning? Until recently all of the work in the area of i...This book explores unintentional learning from an information-processing perspective. What do people learn when they do not know that they are learning? Until recently all of the work in the area of implicit learning focused on empirical questions and methods. In this book, Axel Cleeremans explores unintentional learning from an information-processing perspective. He introduces a theoretical framework that unifies existing data and models on implicit learning, along with a detailed computational model of human performance in sequence-learning situations. The model, based on a simple recurrent network (SRN), is able to predict perfectly the successive elements of sequences generated from finite-state, grammars. Human subjects are shown to exhibit a similar sensitivity to the temporal structure in a series of choice reaction time experiments of increasing complexity; yet their explicit knowledge of the sequence remains limited. Simulation experiments indicate that the SRN model is able to account for these data in great detail. Cleeremans' model is also useful in understanding the effects of a wide range of variables on sequence-learning performance such as attention, the availability of explicit information, or the complexity of the material. Other architectures that process sequential material are considered. These are contrasted with the SRN model, which they sometimes outperform. Considered together, the models show how complex knowledge may emerge through the operation of elementary mechanisms—a key aspect of implicit learning performance. Bradford Books imprintRead More
Publication Year: 1993
Publication Date: 1993-04-13
Language: en
Type: book
Indexed In: ['crossref']
Access and Citation
Cited By Count: 229
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot