Title: Poincaré Duality Algebras, Macaulay's Dual Systems, and Steenrod Operations
Abstract:Poincaré duality algebras originated in the work of topologists on the cohomology of closed manifolds, and Macaulay's dual systems in the study of irreducible ideals in polynomial algebras. These two ...Poincaré duality algebras originated in the work of topologists on the cohomology of closed manifolds, and Macaulay's dual systems in the study of irreducible ideals in polynomial algebras. These two ideas are tied together using basic commutative algebra involving Gorenstein algebras. Steenrod operations also originated in algebraic topology, but may best be viewed as a means of encoding the information often hidden behind the Frobenius map in characteristic p<>0. They provide a noncommutative tool to study commutative algebras over a Galois field. In this Tract the authors skilfully bring together these ideas and apply them to problems in invariant theory. A number of remarkable and unexpected interdisciplinary connections are revealed that will interest researchers in the areas of commutative algebra, invariant theory or algebraic topology.Read More
Publication Year: 2005
Publication Date: 2005-08-18
Language: en
Type: book
Indexed In: ['crossref']
Access and Citation
Cited By Count: 58
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot