Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W4206078167', 'doi': 'https://doi.org/10.2196/preprints.21476', 'title': 'Artificial Intelligence for COVID-19: Rapid Review (Preprint)', 'display_name': 'Artificial Intelligence for COVID-19: Rapid Review (Preprint)', 'publication_year': 2020, 'publication_date': '2020-06-16', 'ids': {'openalex': 'https://openalex.org/W4206078167', 'doi': 'https://doi.org/10.2196/preprints.21476'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.2196/preprints.21476', 'pdf_url': None, 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'posted-content', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://doi.org/10.2196/preprints.21476', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5062134907', 'display_name': 'Jiayang Chen', 'orcid': 'https://orcid.org/0000-0003-1900-0935'}, 'institutions': [{'id': 'https://openalex.org/I165932596', 'display_name': 'National University of Singapore', 'ror': 'https://ror.org/01tgyzw49', 'country_code': 'SG', 'type': 'education', 'lineage': ['https://openalex.org/I165932596']}], 'countries': ['SG'], 'is_corresponding': True, 'raw_author_name': 'Jiayang Chen', 'raw_affiliation_strings': ['Yong Loo Lin School of Medicine, National University of Singapore, Singapore'], 'affiliations': [{'raw_affiliation_string': 'Yong Loo Lin School of Medicine, National University of Singapore, Singapore', 'institution_ids': ['https://openalex.org/I165932596']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5057727929', 'display_name': 'Kay Choong See', 'orcid': 'https://orcid.org/0000-0003-2528-7282'}, 'institutions': [{'id': 'https://openalex.org/I4210146690', 'display_name': 'National University Hospital', 'ror': 'https://ror.org/04fp9fm22', 'country_code': 'SG', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210146690']}, {'id': 'https://openalex.org/I165932596', 'display_name': 'National University of Singapore', 'ror': 'https://ror.org/01tgyzw49', 'country_code': 'SG', 'type': 'education', 'lineage': ['https://openalex.org/I165932596']}], 'countries': ['SG'], 'is_corresponding': False, 'raw_author_name': 'Kay Choong See', 'raw_affiliation_strings': ['Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore', 'Yong Loo Lin School of Medicine, National University of Singapore, Singapore'], 'affiliations': [{'raw_affiliation_string': 'Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore', 'institution_ids': ['https://openalex.org/I4210146690']}, {'raw_affiliation_string': 'Yong Loo Lin School of Medicine, National University of Singapore, Singapore', 'institution_ids': ['https://openalex.org/I165932596']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': ['https://openalex.org/A5062134907'], 'corresponding_institution_ids': ['https://openalex.org/I165932596'], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 2, 'citation_normalized_percentile': {'value': 0.586688, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 69, 'max': 74}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T11636', 'display_name': 'Artificial Intelligence in Healthcare and Education', 'score': 0.9968, 'subfield': {'id': 'https://openalex.org/subfields/2718', 'display_name': 'Health Informatics'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T13702', 'display_name': 'Machine Learning in Healthcare', 'score': 0.9835, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/preprint', 'display_name': 'Preprint', 'score': 0.6010334}, {'id': 'https://openalex.org/keywords/thematic-analysis', 'display_name': 'Thematic Analysis', 'score': 0.4960471}, {'id': 'https://openalex.org/keywords/pandemic', 'display_name': 'Pandemic', 'score': 0.45229283}], 'concepts': [{'id': 'https://openalex.org/C3008058167', 'wikidata': 'https://www.wikidata.org/wiki/Q84263196', 'display_name': 'Coronavirus disease 2019 (COVID-19)', 'level': 4, 'score': 0.7702353}, {'id': 'https://openalex.org/C43169469', 'wikidata': 'https://www.wikidata.org/wiki/Q580922', 'display_name': 'Preprint', 'level': 2, 'score': 0.6010334}, {'id': 'https://openalex.org/C74196892', 'wikidata': 'https://www.wikidata.org/wiki/Q7781188', 'display_name': 'Thematic analysis', 'level': 3, 'score': 0.4960471}, {'id': 'https://openalex.org/C89623803', 'wikidata': 'https://www.wikidata.org/wiki/Q12184', 'display_name': 'Pandemic', 'level': 5, 'score': 0.45229283}, {'id': 'https://openalex.org/C3007834351', 'wikidata': 'https://www.wikidata.org/wiki/Q82069695', 'display_name': 'Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)', 'level': 5, 'score': 0.4438342}, {'id': 'https://openalex.org/C2779473830', 'wikidata': 'https://www.wikidata.org/wiki/Q1540899', 'display_name': 'MEDLINE', 'level': 2, 'score': 0.4359334}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.42747912}, {'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.4219328}, {'id': 'https://openalex.org/C2522767166', 'wikidata': 'https://www.wikidata.org/wiki/Q2374463', 'display_name': 'Data science', 'level': 1, 'score': 0.39619753}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.3770652}, {'id': 'https://openalex.org/C15744967', 'wikidata': 'https://www.wikidata.org/wiki/Q9418', 'display_name': 'Psychology', 'level': 0, 'score': 0.34317663}, {'id': 'https://openalex.org/C136764020', 'wikidata': 'https://www.wikidata.org/wiki/Q466', 'display_name': 'World Wide Web', 'level': 1, 'score': 0.22886601}, {'id': 'https://openalex.org/C17744445', 'wikidata': 'https://www.wikidata.org/wiki/Q36442', 'display_name': 'Political science', 'level': 0, 'score': 0.20857427}, {'id': 'https://openalex.org/C142724271', 'wikidata': 'https://www.wikidata.org/wiki/Q7208', 'display_name': 'Pathology', 'level': 1, 'score': 0.19608852}, {'id': 'https://openalex.org/C190248442', 'wikidata': 'https://www.wikidata.org/wiki/Q839486', 'display_name': 'Qualitative research', 'level': 2, 'score': 0.16605139}, {'id': 'https://openalex.org/C144024400', 'wikidata': 'https://www.wikidata.org/wiki/Q21201', 'display_name': 'Sociology', 'level': 0, 'score': 0.118085414}, {'id': 'https://openalex.org/C2779134260', 'wikidata': 'https://www.wikidata.org/wiki/Q12136', 'display_name': 'Disease', 'level': 2, 'score': 0.098326355}, {'id': 'https://openalex.org/C36289849', 'wikidata': 'https://www.wikidata.org/wiki/Q34749', 'display_name': 'Social science', 'level': 1, 'score': 0.09197533}, {'id': 'https://openalex.org/C524204448', 'wikidata': 'https://www.wikidata.org/wiki/Q788926', 'display_name': 'Infectious disease (medical specialty)', 'level': 3, 'score': 0.0}, {'id': 'https://openalex.org/C199539241', 'wikidata': 'https://www.wikidata.org/wiki/Q7748', 'display_name': 'Law', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.2196/preprints.21476', 'pdf_url': None, 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://doi.org/10.2196/21476', 'pdf_url': 'https://www.jmir.org/2020/10/e21476/PDF', 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.2196/preprints.21476', 'pdf_url': None, 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/1', 'display_name': 'No poverty', 'score': 0.43}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 48, 'referenced_works': ['https://openalex.org/W1581514961', 'https://openalex.org/W1997866278', 'https://openalex.org/W2068181924', 'https://openalex.org/W2142826382', 'https://openalex.org/W2576404523', 'https://openalex.org/W2770177099', 'https://openalex.org/W2895763047', 'https://openalex.org/W2896893468', 'https://openalex.org/W2907638671', 'https://openalex.org/W2914550345', 'https://openalex.org/W2972320421', 'https://openalex.org/W2999612210', 'https://openalex.org/W3004234114', 'https://openalex.org/W3004919484', 'https://openalex.org/W3005079553', 'https://openalex.org/W3005084260', 'https://openalex.org/W3006718791', 'https://openalex.org/W3007933225', 'https://openalex.org/W3008985036', 'https://openalex.org/W3009876049', 'https://openalex.org/W3009970748', 'https://openalex.org/W3010522809', 'https://openalex.org/W3011149445', 'https://openalex.org/W3011716991', 'https://openalex.org/W3012308747', 'https://openalex.org/W3012690896', 'https://openalex.org/W3012813927', 'https://openalex.org/W3012948061', 'https://openalex.org/W3013547516', 'https://openalex.org/W3013697951', 'https://openalex.org/W3013960962', 'https://openalex.org/W3014008009', 'https://openalex.org/W3014289208', 'https://openalex.org/W3014398002', 'https://openalex.org/W3014810299', 'https://openalex.org/W3015522839', 'https://openalex.org/W3016907668', 'https://openalex.org/W3017451406', 'https://openalex.org/W3017819139', 'https://openalex.org/W3017833507', 'https://openalex.org/W3017891573', 'https://openalex.org/W3020514163', 'https://openalex.org/W3025866391', 'https://openalex.org/W3035628188', 'https://openalex.org/W4205194684', 'https://openalex.org/W4206579729', 'https://openalex.org/W4237297853', 'https://openalex.org/W4246852898'], 'related_works': ['https://openalex.org/W4393783309', 'https://openalex.org/W4393774512', 'https://openalex.org/W4393731985', 'https://openalex.org/W4393658307', 'https://openalex.org/W4286761081', 'https://openalex.org/W4229365511', 'https://openalex.org/W4211247774', 'https://openalex.org/W4210578026', 'https://openalex.org/W3131332557', 'https://openalex.org/W3045462960'], 'abstract_inverted_index': {'<sec>': [0, 17, 58, 107, 204], '<title>BACKGROUND</title>': [1], 'COVID-19': [2, 103, 121, 237], 'was': [3, 104, 118], 'first': [4], 'discovered': [5], 'in': [6, 122, 148, 165, 182, 212], 'December': [7, 77], '2019': [8], 'and': [9, 45, 68, 80, 96, 131, 172, 197, 217], 'has': [10, 28, 41], 'since': [11], 'evolved': [12], 'into': [13], 'a': [14, 50, 228], 'pandemic.': [15, 238], '</sec>': [16, 57, 106, 203, 261], '<title>OBJECTIVE</title>': [18], 'To': [19], 'address': [20], 'this': [21], 'global': [22], 'health': [23, 36], 'crisis,': [24], 'artificial': [25], 'intelligence': [26], '(AI)': [27], 'been': [29], 'deployed': [30], 'at': [31], 'various': [32], 'levels': [33], 'of': [34, 52, 65, 99, 141, 144, 150, 169, 174, 192, 199, 208, 215, 222], 'the': [35, 66, 86, 209, 213, 236, 244], 'care': [37], 'system.': [38], 'However,': [39], 'AI': [40, 53, 100, 117, 177, 242], 'both': [42], 'potential': [43, 245], 'benefits': [44], 'limitations.': [46], 'We': [47, 60, 84, 133], 'therefore': [48], 'conducted': [49], 'review': [51, 98], 'applications': [54, 101], 'for': [55, 71, 102, 115, 230], 'COVID-19.': [56, 202], '<title>METHODS</title>': [59], 'performed': [61], 'an': [62], 'extensive': [63], 'search': [64, 88], 'PubMed': [67], 'EMBASE': [69], 'databases': [70], 'COVID-19–related': [72], 'English-language': [73], 'studies': [74], 'published': [75], 'between': [76], '1,': [78], '2019,': [79], 'March': [81], '31,': [82], '2020.': [83], 'supplemented': [85], 'database': [87], 'with': [89, 188, 201], 'reference': [90], 'list': [91], 'checks.': [92], 'A': [93], 'thematic': [94], 'analysis': [95], 'narrative': [97], 'conducted.': [105], '<title>RESULTS</title>': [108], 'In': [109, 206], 'total,': [110], '11': [111], 'papers': [112], 'were': [113], 'included': [114], 'review.': [116], 'applied': [119], 'to': [120, 156, 162, 233, 246], 'four': [123, 183], 'areas:': [124, 185], 'diagnosis,': [125], 'public': [126], 'health,': [127], 'clinical': [128, 195], 'decision': [129], 'making,': [130], 'therapeutics.': [132], 'identified': [134], 'several': [135], 'limitations': [136], 'including': [137], 'insufficient': [138], 'data,': [139, 190], 'omission': [140], 'multimodal': [142], 'methods': [143, 232], 'AI-based': [145], 'assessment,': [146], 'delay': [147], 'realization': [149], 'benefits,': [151], 'poor': [152], 'internal/external': [153], 'validation,': [154], 'inability': [155, 161], 'be': [157, 163, 180, 255], 'used': [158, 164], 'by': [159, 257], 'laypersons,': [160], 'resource-poor': [166], 'settings,': [167], 'presence': [168, 173], 'ethical': [170], 'pitfalls,': [171], 'legal': [175], 'barriers.': [176], 'could': [178], 'potentially': [179], 'explored': [181], 'other': [184, 193], 'surveillance,': [186], 'combination': [187], 'big': [189], 'operation': [191], 'core': [194], 'services,': [196], 'management': [198], 'patients': [200], '<title>CONCLUSIONS</title>': [205], 'view': [207], 'continuing': [210], 'increase': [211], 'number': [214], 'cases,': [216], 'given': [218], 'that': [219], 'multiple': [220], 'waves': [221], 'infections': [223], 'may': [224, 253], 'occur,': [225], 'there': [226], 'is': [227], 'need': [229], 'effective': [231], 'help': [234], 'control': [235], 'Despite': [239], 'its': [240], 'shortcomings,': [241], 'holds': [243], 'greatly': [247], 'augment': [248], 'existing': [249], 'human': [250], 'efforts,': [251], 'which': [252], 'otherwise': [254], 'overwhelmed': [256], 'high': [258], 'patient': [259], 'numbers.': [260]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W4206078167', 'counts_by_year': [{'year': 2021, 'cited_by_count': 2}], 'updated_date': '2024-12-20T19:12:29.201241', 'created_date': '2022-01-26'}