Title: Learning-based QoS Path Prediction Method in SDN Environment
Abstract:SDN (Software-Defined Networking) 환경에서 플로우의 경로 제어에 의한 QoS (Quality of Service) 지원 시, 현재의 단순한 최소 비용 경로 탐색 방식만으로는 비효율적인 경로 재설정 문제가 발생할 수 있다. 링크 품질에 기반 하여 도출된 플로우 경로의 실측 성능은 예측 성능과 다를 수 있고, 특히, 후보 경로에 대한...SDN (Software-Defined Networking) 환경에서 플로우의 경로 제어에 의한 QoS (Quality of Service) 지원 시, 현재의 단순한 최소 비용 경로 탐색 방식만으로는 비효율적인 경로 재설정 문제가 발생할 수 있다. 링크 품질에 기반 하여 도출된 플로우 경로의 실측 성능은 예측 성능과 다를 수 있고, 특히, 후보 경로에 대한 순차적 QoS 조건 탐색 시 이전에 최종 경로로 식별되었던 동일 경로에 대한 반복 탐색으로 경로 기반 QoS 지원의 효용성이 저하될 수 있다. 본 논문에서는 학습 기반 QoS 경로 탐색 모델을 제안한다. 학습 모델은 네트워크 상태에 따라 최종적으로 QoS 조건을 충족한 경로를 학습하고, 경로 재탐색 시 질의 네트워크 상태에 대한 QoS 경로를 예측한다. 실험 결과 본 학습 모델은 유사한 네트워크 상태 재현 시 불필요한 경로 반복 탐색 비용을 줄일 수 있고, 신속한 QoS 품질 복구가 요구되는 서비스 환경에서 다른 학습 기반 모델에 비해 효용성이 높다.Read More
Publication Year: 2021
Publication Date: 2021-11-19
Language: ko
Type: article
Indexed In: ['crossref']
Access and Citation
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot