Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3205907281', 'doi': 'https://doi.org/10.1002/cpe.6667', 'title': 'Advances in parallel and distributed computing and its applications', 'display_name': 'Advances in parallel and distributed computing and its applications', 'publication_year': 2021, 'publication_date': '2021-10-16', 'ids': {'openalex': 'https://openalex.org/W3205907281', 'doi': 'https://doi.org/10.1002/cpe.6667', 'mag': '3205907281'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1002/cpe.6667', 'pdf_url': 'https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.6667', 'source': {'id': 'https://openalex.org/S11065456', 'display_name': 'Concurrency and Computation Practice and Experience', 'issn_l': '1532-0626', 'issn': ['1532-0626', '1532-0634'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'bronze', 'oa_url': 'https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.6667', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100681241', 'display_name': 'Hui Tian', 'orcid': 'https://orcid.org/0000-0002-9683-8830'}, 'institutions': [{'id': 'https://openalex.org/I11701301', 'display_name': 'Griffith University', 'ror': 'https://ror.org/02sc3r913', 'country_code': 'AU', 'type': 'education', 'lineage': ['https://openalex.org/I11701301']}], 'countries': ['AU'], 'is_corresponding': False, 'raw_author_name': 'Hui Tian', 'raw_affiliation_strings': ['School of Information and Communication Technology, Griffith University, Southport, Queensland, Australia'], 'affiliations': [{'raw_affiliation_string': 'School of Information and Communication Technology, Griffith University, Southport, Queensland, Australia', 'institution_ids': ['https://openalex.org/I11701301']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5091254555', 'display_name': 'Alan Wee‐Chung Liew', 'orcid': 'https://orcid.org/0000-0001-6718-7584'}, 'institutions': [{'id': 'https://openalex.org/I11701301', 'display_name': 'Griffith University', 'ror': 'https://ror.org/02sc3r913', 'country_code': 'AU', 'type': 'education', 'lineage': ['https://openalex.org/I11701301']}], 'countries': ['AU'], 'is_corresponding': False, 'raw_author_name': 'Alan Wee‐Chung Liew', 'raw_affiliation_strings': ['School of Information and Communication Technology, Griffith University, Southport, Queensland, Australia'], 'affiliations': [{'raw_affiliation_string': 'School of Information and Communication Technology, Griffith University, Southport, Queensland, Australia', 'institution_ids': ['https://openalex.org/I11701301']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5070128994', 'display_name': 'Hong Shen', 'orcid': 'https://orcid.org/0000-0002-3663-6591'}, 'institutions': [{'id': 'https://openalex.org/I157773358', 'display_name': 'Sun Yat-sen University', 'ror': 'https://ror.org/0064kty71', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I157773358']}], 'countries': ['CN'], 'is_corresponding': True, 'raw_author_name': 'Hong Shen', 'raw_affiliation_strings': ['School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China'], 'affiliations': [{'raw_affiliation_string': 'School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China', 'institution_ids': ['https://openalex.org/I157773358']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': ['https://openalex.org/A5070128994'], 'corresponding_institution_ids': ['https://openalex.org/I157773358'], 'apc_list': {'value': 4740, 'currency': 'USD', 'value_usd': 4740, 'provenance': 'doaj'}, 'apc_paid': None, 'fwci': 0.342, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 3, 'citation_normalized_percentile': {'value': 0.634001, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 72, 'max': 76}, 'biblio': {'volume': '34', 'issue': '2', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10682', 'display_name': 'Quantum Computing Algorithms and Architecture', 'score': 0.9969, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10682', 'display_name': 'Quantum Computing Algorithms and Architecture', 'score': 0.9969, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10101', 'display_name': 'Cloud Computing and Resource Management', 'score': 0.9869, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12002', 'display_name': 'Computability, Logic, AI Algorithms', 'score': 0.9572, 'subfield': {'id': 'https://openalex.org/subfields/1703', 'display_name': 'Computational Theory and Mathematics'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/autonomic-computing', 'display_name': 'Autonomic Computing', 'score': 0.418855}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7214989}, {'id': 'https://openalex.org/C79974875', 'wikidata': 'https://www.wikidata.org/wiki/Q483639', 'display_name': 'Cloud computing', 'level': 2, 'score': 0.5878271}, {'id': 'https://openalex.org/C48044578', 'wikidata': 'https://www.wikidata.org/wiki/Q727490', 'display_name': 'Scalability', 'level': 2, 'score': 0.53301483}, {'id': 'https://openalex.org/C2522767166', 'wikidata': 'https://www.wikidata.org/wiki/Q2374463', 'display_name': 'Data science', 'level': 1, 'score': 0.49090558}, {'id': 'https://openalex.org/C76831024', 'wikidata': 'https://www.wikidata.org/wiki/Q5227096', 'display_name': 'Data-intensive computing', 'level': 4, 'score': 0.44043308}, {'id': 'https://openalex.org/C120314980', 'wikidata': 'https://www.wikidata.org/wiki/Q180634', 'display_name': 'Distributed computing', 'level': 1, 'score': 0.4386565}, {'id': 'https://openalex.org/C558632462', 'wikidata': 'https://www.wikidata.org/wiki/Q788172', 'display_name': 'Autonomic computing', 'level': 3, 'score': 0.418855}, {'id': 'https://openalex.org/C75684735', 'wikidata': 'https://www.wikidata.org/wiki/Q858810', 'display_name': 'Big data', 'level': 2, 'score': 0.4141293}, {'id': 'https://openalex.org/C70429105', 'wikidata': 'https://www.wikidata.org/wiki/Q249999', 'display_name': 'Grid computing', 'level': 3, 'score': 0.25147516}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C77088390', 'wikidata': 'https://www.wikidata.org/wiki/Q8513', 'display_name': 'Database', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C187691185', 'wikidata': 'https://www.wikidata.org/wiki/Q2020720', 'display_name': 'Grid', 'level': 2, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1002/cpe.6667', 'pdf_url': 'https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.6667', 'source': {'id': 'https://openalex.org/S11065456', 'display_name': 'Concurrency and Computation Practice and Experience', 'issn_l': '1532-0626', 'issn': ['1532-0626', '1532-0634'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1002/cpe.6667', 'pdf_url': 'https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.6667', 'source': {'id': 'https://openalex.org/S11065456', 'display_name': 'Concurrency and Computation Practice and Experience', 'issn_l': '1532-0626', 'issn': ['1532-0626', '1532-0634'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 10, 'referenced_works': ['https://openalex.org/W3011765119', 'https://openalex.org/W3045274385', 'https://openalex.org/W3111041744', 'https://openalex.org/W3116156417', 'https://openalex.org/W3129361012', 'https://openalex.org/W3134221168', 'https://openalex.org/W3139569600', 'https://openalex.org/W3149283183', 'https://openalex.org/W3168714121', 'https://openalex.org/W3177243942'], 'related_works': ['https://openalex.org/W4390608645', 'https://openalex.org/W4247566972', 'https://openalex.org/W3090563135', 'https://openalex.org/W2960264696', 'https://openalex.org/W2794953737', 'https://openalex.org/W2497432351', 'https://openalex.org/W2248675240', 'https://openalex.org/W2165644979', 'https://openalex.org/W2141724443', 'https://openalex.org/W2131655578'], 'abstract_inverted_index': {'Parallel': [0, 238], 'and': [1, 21, 29, 33, 50, 61, 65, 81, 95, 104, 108, 133, 146, 156, 160, 176, 199, 204, 206, 211, 239, 243, 279, 383, 428, 469, 486, 500, 693, 732, 798, 818, 855, 895, 980, 990, 1007, 1014, 1027, 1046, 1057, 1161, 1226, 1247, 1253, 1258, 1262, 1268, 1272, 1289, 1300, 1311, 1314, 1340, 1349], 'distributed': [2, 30, 66, 109, 200, 357, 1198, 1259, 1312], 'computing': [3, 31, 67, 110, 201, 999, 1276, 1313], 'has': [4, 85, 111, 323, 871, 1050], 'been': [5, 87, 267, 324, 872], 'the': [6, 25, 44, 173, 233, 260, 277, 282, 302, 310, 316, 337, 340, 361, 365, 372, 376, 386, 389, 395, 401, 449, 453, 457, 492, 496, 502, 505, 523, 537, 577, 583, 617, 625, 652, 656, 670, 676, 699, 702, 733, 740, 746, 752, 755, 780, 794, 827, 833, 853, 864, 879, 885, 892, 897, 935, 946, 953, 963, 970, 976, 982, 985, 996, 1003, 1019, 1077, 1096, 1104, 1128, 1134, 1152, 1173, 1179, 1197, 1265, 1284, 1307, 1319, 1344, 1347], 'basis': [7], 'to': [8, 42, 89, 163, 180, 217, 252, 257, 335, 391, 412, 440, 456, 476, 536, 546, 589, 641, 697, 722, 860, 889, 922, 933, 1091, 1138, 1142, 1324, 1329, 1336, 1342], 'many': [9, 117], 'emerging': [10], 'areas,': [11], 'such': [12], 'as': [13, 247, 249, 1016, 1018, 1111], 'smart': [14], 'networks,': [15], 'cloud': [16, 1201], 'computing,': [17, 135, 1260], 'big': [18], 'data': [19, 533, 695, 1273], 'analysis,': [20, 385], 'blockchain': [22], 'technology.': [23], 'Without': [24], 'development': [26], 'of': [27, 36, 100, 116, 127, 150, 186, 197, 229, 301, 339, 364, 397, 448, 459, 526, 539, 601, 679, 690, 701, 782, 844, 926, 937, 940, 987, 1005, 1098, 1118, 1156, 1189, 1200, 1231, 1238, 1256, 1283, 1304, 1309], 'parallel': [28, 64, 107, 198, 1153, 1257, 1275, 1310], 'technologies': [32, 212], 'various': [34, 53], 'types': [35], 'systems,': [37], 'it': [38, 1049], 'is': [39, 162, 297, 333, 349, 379, 419, 569, 639, 664, 683, 718, 858, 1074, 1216], 'not': [40], 'possible': [41], 'meet': [43], 'requirement': [45], 'on': [46, 154, 237, 565, 707, 779, 836, 1012, 1054, 1103, 1120, 1209], 'efficiency,': [47, 1286], 'accuracy,': [48, 1287], 'scalability,': [49, 1288], 'reliability': [51], 'for': [52, 289, 319, 528, 556, 593, 647, 759, 841, 875, 900, 998, 1123, 1146, 1186, 1302, 1332, 1346], 'critical': [54], 'applications': [55, 178, 210, 1029], 'that': [56, 141, 168, 446, 562, 952, 1035, 1087, 1293], 'support': [57], 'our': [58, 101, 144], 'modern': [59, 73, 102, 177], 'economy': [60], 'society.': [62], 'While': [63], 'played': [68], 'a': [69, 298, 345, 420, 464, 470, 586, 633, 643, 659, 687, 809, 837, 904, 910, 916, 1051, 1067, 1112, 1157, 1236, 1278], 'vital': [70, 1279], 'role': [71, 1280], 'in': [72, 113, 137, 172, 193, 209, 291, 305, 394, 431, 484, 489, 507, 615, 630, 666, 714, 791, 812, 903, 945, 969, 995, 1196, 1224, 1245, 1250, 1270, 1281, 1306, 1351], 'science,': [74], 'engineering,': [75], 'biology,': [76], 'medicine,': [77, 131], 'pharmacy,': [78], 'astronomy,': [79], 'geology,': [80], 'archaeology,': [82], 'its': [83, 1071, 1315], 'application': [84], 'also': [86, 542, 728, 1062, 1085, 1221, 1341], 'extended': [88, 227, 543], 'business,': [90], 'finance,': [91], 'economics,': [92], 'management,': [93], 'government,': [94], 'defense,': [96], 'covering': [97], 'all': [98, 263, 1330, 1343], 'aspects': [99], 'society': [103, 145], 'life.': [105, 147], 'Furthermore,': [106], 'emerged': [112], 'recent': [114, 166, 1121, 1243], 'advances': [115], 'hotspot': [118], 'research': [119, 1249, 1305], 'directions': [120], 'including': [121, 202], 'artificial': [122], 'intelligence,': [123], 'machine': [124, 215], 'learning,': [125], 'Internet': [126], 'Things,': [128], 'bioinformatics,': [129], 'digital': [130], 'cybersecurity,': [132], 'social': [134], 'resulting': [136], 'numerous': [138], 'ground-breading': [139], 'discoveries': [140], 'are': [142, 425, 803, 957], 'changing': [143], 'The': [148, 184, 295, 404, 443, 622, 1228], 'purpose': [149], 'this': [151, 181, 187, 253, 292, 306, 343, 370, 478, 712, 1232, 1294, 1337], 'special': [152, 188, 254, 293, 307, 1233, 1295, 1338], 'issue': [153, 189, 255, 454, 1234, 1296, 1339], '"Parallel': [155], 'Distributed': [157, 240], 'Computing,': [158, 241], 'Applications': [159, 242], 'Technologies"': [161], 'display': [164], 'some': [165, 1242], 'developments': [167, 1244], 'address': [169, 477, 504], 'challenging': [170, 421], 'problems': [171], 'theory,': [174], 'technology,': [175], 'related': [179, 455], 'competitive': [182], 'field.': [183], 'content': [185], 'covers': [190], 'different': [191, 1031, 1068], 'topics': [192, 1240], 'both': [194, 226, 1055, 1251], 'core': [195, 1252], 'areas': [196, 208, 1255], 'architectures': [203, 989, 1026], 'algorithms,': [205], 'interdisciplinary': [207, 1254], 'ranging': [213], 'from': [214, 225, 281, 416, 863], 'learning': [216, 839], 'wireless': [218, 320, 760], 'sensor': [219, 321, 373, 761], 'networks.': [220, 762], 'It': [221], 'includes': [222], 'papers': [223, 231, 265, 288, 304, 1230], 'selected': [224, 286, 303, 1229], 'versions': [228], 'accepted': [230], 'at': [232, 271, 1095], '20th': [234], 'International': [235], 'Conference': [236], 'Technologies': [244], '(PDCAT': [245], '2019),': [246], 'well': [248, 1017], 'new': [250, 327], 'submissions': [251], 'open': [256], 'public.': [258], 'During': [259], 'review': [261], 'process,': [262], 'submitted': [264], 'have': [266, 285, 611, 1066], 'carefully': [268], 'reviewed': [269], 'by': [270, 312, 351, 355, 406, 498, 579, 672, 748, 829, 869, 881, 959, 978, 1130, 1175], 'least': [272], 'three': [273, 1025], 'reviewers.': [274], 'After': [275, 710], 'evaluating': [276], 'scores': [278], 'reports': [280], 'reviewers,': [283], 'we': [284], '11': [287], 'inclusion': [290], 'issue.': [294, 308, 479], 'following': [296], 'brief': [299], 'description': [300], 'In': [309, 342, 369, 495, 576, 669, 745, 826, 878, 975, 1127, 1172], 'paper': [311, 405, 497, 578, 671, 747, 828, 880, 977, 1129, 1174], 'Zou': [313], 'et': [314, 408, 581, 674, 750, 831, 883, 1132, 1177], 'al.,1': [315], 'barrier': [317, 348], 'coverage': [318], 'networks': [322, 682], 'addressed.': [325], 'A': [326], 'model': [328, 475, 481], 'using': [329, 651, 773, 1037], 'sink-based': [330], 'mobile': [331, 352, 756], 'sensors': [332, 353, 366], 'proposed': [334, 513, 585, 686, 764, 909, 1181, 1204], 'prolong': [336], 'lifespan': [338, 378], 'coverage.': [341], 'model,': [344], 'given': [346], 'line': [347], 'covered': [350], 'emitted': [354], 'several': [356, 566], 'sink': [358], 'stations': [359], 'where': [360, 1070], 'maximum': [362], 'movement': [363], 'were': [367], 'minimized.': [368], 'way,': [371], 'node': [374], 'with': [375, 491, 509, 517, 739, 823, 962, 1030, 1040], 'shortest': [377], 'prolonged.': [380], 'Through': [381, 558], 'theoretical': [382, 1246], 'experimental': [384], 'authors': [387, 444, 503, 584, 623, 657, 753, 834, 886, 983, 1135, 1180, 1331], 'showed': [388, 482, 808, 1034, 1086, 1222], 'runtime': [390, 1013], 'be': [392, 1109, 1194], 'linear': [393], 'number': [396, 781], 'sinks': [398], 'which': [399, 435, 521, 550, 914, 1192], 'reach': [400], 'optimal': [402], 'bound.': [403], 'Kayesh': [407], 'al.2': [409], 'studies': [410], 'how': [411, 888, 1137], 'detect': [413, 441], 'event': [414, 473], 'causality': [415], 'tweets.': [417], 'This': [418, 930, 1106], 'task': [422], 'because': [423, 793], 'tweets': [424], 'short,': [426], 'unstructured,': [427], 'often': [429], 'written': [430], 'highly': [432], 'informal': [433], 'language': [434], 'lacks': [436], 'enough': [437], 'contextual': [438, 460], 'information': [439, 1299], 'causality.': [442], 'claim': [445, 658], 'none': [447], 'existing': [450, 493, 573, 824, 971], 'approaches': [451], 'tackle': [452], 'lack': [458], 'information.': [461], 'They': [462, 512, 531, 541, 685, 727, 763, 847, 908, 1001, 1023, 1033, 1061, 1084, 1150, 1203], 'applied': [463, 848], 'context': [465], 'word': [466], 'extension': [467], 'technique': [468, 520], 'deep': [471, 838], 'causal': [472], 'detection': [474, 487], 'Their': [480, 805, 867, 949, 1166, 1213, 1219], 'improvements': [483], 'recall': [485], 'accuracy': [488], 'comparison': [490], 'approaches.': [494, 825], 'Cao': [499], 'Shen,3': [501], 'drawbacks': [506], 'dealing': [508], 'imbalanced': [510, 529, 567], 'data.': [511], 'an': [514, 547, 597, 765, 774, 789, 799, 1182], 'improved': [515, 720], 'clustering': [516], 'stratified': [518], 'sampling': [519, 574], 'improves': [522, 1044], 'classification': [524, 564, 868], 'performance': [525, 724, 811, 899, 924, 1045], 'SVMs': [527], 'datasets.': [530], 'sample': [532], 'differently': [534], 'according': [535, 721], 'type': [538], 'classes.': [540], 'their': [544, 563, 637, 716, 723, 785, 1326, 1333, 1353], 'method': [545, 638, 1167], 'ensemble': [548], 'classifier': [549], 'uses': [551, 915], 'multiple': [552, 694], 'base': [553], 'SVM': [554], 'classifiers': [555], 'prediction.': [557], 'comparison,': [559], 'they': [560], 'demonstrated': [561], 'datasets': [568], 'more': [570], 'effective': [571, 874], 'than': [572, 1076], 'methods.': [575], 'Quan': [580], 'al.,4': [582], 'practical': [587, 1248], 'way': [588], 'fix': [590], 'error': [591, 603, 648], 'correction': [592, 604], 'quantum': [594, 602, 608], 'computing.': [595, 1202], 'As': [596], 'important': [598], 'family': [599], 'member': [600], 'codes': [605, 609], '(QECCs),': [606], 'Reed–Muller': [607], '(RMQCs)': [610], 'attracted': [612], 'much': [613], 'interest': [614], 'studying': [616], 'universal': [618, 660], 'fault-tolerant': [619, 626, 661], 'gate': [620, 662], 'set.': [621], 'investigated': [624], 'logical': [627, 653], 'Hadamard': [628, 654], 'gates': [629], 'RMQCs.': [631], 'At': [632], 'reasonable': [634], 'higher': [635, 644, 1099], 'cost,': [636], 'able': [640], 'achieve': [642], 'success': [645], 'rate': [646], 'correction.': [649], 'By': [650, 772], 'gate,': [655], 'set': [663], 'achieved': [665, 1168], 'single': [667, 691, 741], 'RMQC.': [668], 'Zhou': [673], 'al.,5': [675], 'inference': [677], 'speed': [678, 717], 'convolution': [680, 706], 'neural': [681], 'studied.': [684], 'pipelining': [688], 'strategy': [689, 713], 'instruction': [692], 'instructions': [696, 1039, 1079], 'optimize': [698], 'process': [700], '3': [703, 705], '×': [704], 'ARM-based': [708], 'CPUs.': [709], 'implementing': [711], 'practice,': [715], 'largely': [719], 'profiling': [725], 'measurement.': [726], 'enabled': [729], 'multithread': [730], 'processing': [731, 1154, 1159], 'speedup': [734], 'reaches': [735], '18.3': [736], 'times': [737], 'compared': [738, 822, 961], 'thread': [742], 'unoptimized': [743], 'version.': [744], 'Chen': [749], 'al.,6': [751], 'studied': [754, 887, 1002], 'recharging': [757], 'problem': [758], 'adaptive': [766, 775], 'real-time': [767], 'on-demand': [768], 'charging': [769, 776, 783, 786, 796, 801, 813, 816], 'scheduling': [770, 820], 'scheme.': [771], 'mode': [777], 'based': [778, 1208], 'requests,': [784], 'scheme': [787, 921], 'gains': [788], 'improvement': [790, 1223], 'efficiency': [792], 'location-generated': [795], 'cost': [797, 1097], 'energy-driven': [800], 'priority': [802], 'considered.': [804], 'simulation': [806], 'results': [807], 'better': [810, 1082, 1092], 'throughput,': [814], 'average': [815], 'latency,': [817], 'charge': [819], 'time': [821, 1348], 'Zhang': [830], 'al.,7': [832], 'focused': [835], 'algorithm': [840, 1185], 'Chinese': [842, 876], 'characters': [843, 854], 'criminal': [845, 865], 'cases.': [846], 'text': [849], 'embedding': [850], 'when': [851], 'preprocessing': [852], 'words.': [856], 'CNN': [857], 'used': [859, 1195], 'extract': [861], 'features': [862], 'database.': [866], 'CNN-LSTM': [870], 'proved': [873], 'characters.': [877], 'Farahabady': [882], 'al.,8': [884], 'efficiently': [890], 'schedule': [891], 'shared': [893], 'resources': [894], 'keep': [896], "system's": [898], 'virtual': [901], 'services': [902], 'virtualized': [905], 'computer': [906], 'system.': [907], 'resource': [911, 965], 'allocation': [912, 966], 'controller': [913, 931], 'fully': [917], 'polynomial-time': [918], 'randomized': [919], 'approximation': [920], 'enable': [923], 'isolation': [925], 'concurrent': [927], 'I/O': [928], 'requests.': [929], 'aims': [932], 'minimize': [934], 'degree': [936], 'total': [938], 'quality': [939], 'service': [941], '(QoS)': [942], 'violation': [943, 955], 'incidents': [944, 956], 'entire': [947], 'platform.': [948, 1165], 'work': [950, 1107], 'demonstrates': [951], 'QoS': [954], 'reduced': [958], '32%': [960], 'default': [964], 'policy': [967], 'embedded': [968], 'Linux': [972], 'container': [973], 'layer.': [974], 'Guermouche': [979], 'Orgerie,9': [981], 'discussed': [984], 'limits': [986], 'physical': [988], 'increasing': [991], 'dark': [992], 'silicon': [993], 'use': [994, 1139], 'race': [997], 'power.': [1000], 'impact': [1004, 1053], 'vectorization': [1006, 1119], 'thermal': [1008], 'design': [1009], 'power': [1010, 1021, 1059, 1072], '(TDP)': [1011], 'processors,': [1015], 'DRAM': [1020, 1056], 'consumption.': [1022, 1060], 'considered': [1024], 'five': [1028], 'behaviors.': [1032], 'although': [1036], 'SIMD': [1038], 'larger': [1041], 'register': [1042], 'sizes': [1043], 'energy': [1047, 1100], 'consumption,': [1048], 'negative': [1052], 'processor': [1058], 'claimed': [1063], 'AVX512': [1064], 'may': [1065, 1089], 'behavior': [1069], 'consumption': [1073, 1101], 'lower': [1075], 'other': [1078], 'despite': [1080], 'providing': [1081, 1352], 'performance.': [1083], 'turboboost': [1088], 'lead': [1090], 'performance,': [1093], 'but': [1094], 'depending': [1102], 'architecture.': [1105], 'can': [1108, 1193], 'regarded': [1110], 'valuable': [1113, 1298, 1334], 'study': [1114], 'over': [1115], 'four': [1116], 'generations': [1117], 'hardware': [1122], 'representative': [1124], 'HPC': [1125], 'benchmarks.': [1126], 'Janssen': [1131], 'al.,10': [1133], 'addressed': [1136], 'genetic': [1140], 'algorithms': [1141], 'find': [1143], 'near-optimal': [1144], 'solutions': [1145], 'nondeterministic': [1147], 'polynomial-hard': [1148], 'problems.': [1149], 'employed': [1151], 'capability': [1155], 'graphics': [1158], 'unit': [1160], "Nvidia's": [1162], 'CUDA': [1163], 'programming': [1164], 'significant': [1169], 'computational': [1170], 'speedups.': [1171], 'Yao': [1176], 'al.,11': [1178], 'efficient': [1183], 'compression': [1184, 1211, 1214], 'large': [1187], 'collections': [1188], 'FASTA': [1190], 'genomes': [1191], 'system': [1199], 'two': [1205], 'optimization': [1206], 'schemes': [1207], 'HRCM': [1210], 'method.': [1212], 'ratio': [1215], 'significantly': [1217], 'improved.': [1218], 'methods': [1220], 'robustness': [1225], 'scalability.': [1227], 'cover': [1235], 'variety': [1237], 'interesting': [1239], 'reflecting': [1241], 'applications,': [1261], 'technologies.': [1263], 'With': [1264], 'ever-increasing': [1266], 'scale': [1267], 'complexity': [1269], 'computation': [1271], 'analytics,': [1274], 'plays': [1277], 'provision': [1282], 'required': [1285], 'reliability.': [1290], 'We': [1291], 'hope': [1292], 'provides': [1297], 'references': [1301], 'pursuit': [1303], 'field': [1308], 'relevant': [1316], 'areas.': [1317], 'Finally,': [1318], 'guest': [1320], 'editors': [1321], 'would': [1322], 'like': [1323], 'extend': [1325], 'sincere': [1327], 'thanks': [1328], 'contributions': [1335], 'reviewers': [1345], 'effort': [1350], 'reviews.': [1354]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3205907281', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2023, 'cited_by_count': 2}], 'updated_date': '2025-01-10T09:27:38.124250', 'created_date': '2021-10-25'}