Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3204693605', 'doi': 'https://doi.org/10.1090/conm/772/15484', 'title': '𝐵-rigidity of the property to be an almost Pogorelov polytope', 'display_name': '𝐵-rigidity of the property to be an almost Pogorelov polytope', 'publication_year': 2021, 'publication_date': '2021-01-01', 'ids': {'openalex': 'https://openalex.org/W3204693605', 'doi': 'https://doi.org/10.1090/conm/772/15484', 'mag': '3204693605'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1090/conm/772/15484', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764899347', 'display_name': 'Contemporary mathematics - American Mathematical Society', 'issn_l': '0271-4132', 'issn': ['0271-4132', '1098-3627'], 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/P4310315719', 'host_organization_name': 'American Mathematical Society', 'host_organization_lineage': ['https://openalex.org/P4310315719'], 'host_organization_lineage_names': ['American Mathematical Society'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'other', 'type_crossref': 'other', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5069660058', 'display_name': 'Николай Юрьевич Ероховец', 'orcid': None}, 'institutions': [], 'countries': [], 'is_corresponding': True, 'raw_author_name': 'Nikolai Erokhovets', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': ['https://openalex.org/A5069660058'], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': False, 'cited_by_count': 4, 'citation_normalized_percentile': {'value': 0.904762, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 76, 'max': 79}, 'biblio': {'volume': None, 'issue': None, 'first_page': '107', 'last_page': '122'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10948', 'display_name': 'Advanced Combinatorial Mathematics', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/2607', 'display_name': 'Discrete Mathematics and Combinatorics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10948', 'display_name': 'Advanced Combinatorial Mathematics', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/2607', 'display_name': 'Discrete Mathematics and Combinatorics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10896', 'display_name': 'Homotopy and Cohomology in Algebraic Topology', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/2610', 'display_name': 'Mathematical Physics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12069', 'display_name': 'Commutative Algebra and Its Applications', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/2602', 'display_name': 'Algebra and Number Theory'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.6771887}, {'id': 'https://openalex.org/C2776321320', 'wikidata': 'https://www.wikidata.org/wiki/Q857525', 'display_name': 'Annotation', 'level': 2, 'score': 0.49364603}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.49110365}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.4570049}, {'id': 'https://openalex.org/C2777299769', 'wikidata': 'https://www.wikidata.org/wiki/Q3707858', 'display_name': 'Type (biology)', 'level': 2, 'score': 0.41330463}, {'id': 'https://openalex.org/C77088390', 'wikidata': 'https://www.wikidata.org/wiki/Q8513', 'display_name': 'Database', 'level': 1, 'score': 0.33987087}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.3373344}, {'id': 'https://openalex.org/C127313418', 'wikidata': 'https://www.wikidata.org/wiki/Q1069', 'display_name': 'Geology', 'level': 0, 'score': 0.07250413}, {'id': 'https://openalex.org/C151730666', 'wikidata': 'https://www.wikidata.org/wiki/Q7205', 'display_name': 'Paleontology', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1090/conm/772/15484', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764899347', 'display_name': 'Contemporary mathematics - American Mathematical Society', 'issn_l': '0271-4132', 'issn': ['0271-4132', '1098-3627'], 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/P4310315719', 'host_organization_name': 'American Mathematical Society', 'host_organization_lineage': ['https://openalex.org/P4310315719'], 'host_organization_lineage_names': ['American Mathematical Society'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 20, 'referenced_works': ['https://openalex.org/W187862351', 'https://openalex.org/W2004902643', 'https://openalex.org/W2153541023', 'https://openalex.org/W2242436554', 'https://openalex.org/W2314483652', 'https://openalex.org/W2405317312', 'https://openalex.org/W2520516898', 'https://openalex.org/W2605113286', 'https://openalex.org/W2605212910', 'https://openalex.org/W2977023709', 'https://openalex.org/W2979727702', 'https://openalex.org/W3016111003', 'https://openalex.org/W3016220483', 'https://openalex.org/W3098165894', 'https://openalex.org/W3103594878', 'https://openalex.org/W3123377259', 'https://openalex.org/W36791458', 'https://openalex.org/W4244914147', 'https://openalex.org/W4288083520', 'https://openalex.org/W84576864'], 'related_works': ['https://openalex.org/W4380994516', 'https://openalex.org/W2625833328', 'https://openalex.org/W2556260348', 'https://openalex.org/W2392921965', 'https://openalex.org/W2377979023', 'https://openalex.org/W2361861616', 'https://openalex.org/W2358755282', 'https://openalex.org/W2263699433', 'https://openalex.org/W2218034408', 'https://openalex.org/W1533177136'], 'abstract_inverted_index': {'Toric': [0], 'topology': [1], 'assigns': [2], 'to': [3, 270, 274, 300, 328, 337, 344], 'each<inline-formula': [4], 'content-type="math/mathml"><mml:math': [5, 13, 18, 23, 35, 55, 63, 89, 99, 109, 115, 123, 128, 137, 169, 210, 219, 243, 278, 293, 308, 352, 364, 369, 377, 384, 400, 408], 'xmlns:mml="http://www.w3.org/1998/Math/MathML"': [6, 14, 19, 24, 36, 56, 64, 90, 100, 110, 116, 124, 129, 138, 170, 211, 220, 244, 279, 294, 309, 353, 365, 370, 378, 385, 401, 409], 'alttext="n"><mml:semantics><mml:mi>n</mml:mi><mml:annotation': [7, 125], 'encoding="application/x-tex">n</mml:annotation></mml:semantics></mml:math></inline-formula>-dimensional': [8], 'combinatorial': [9, 87], 'simple': [10], 'convex': [11, 84], 'polytope<inline-formula': [12, 108], 'alttext="upper': [15, 57, 91, 101, 111, 117, 130, 139, 171, 280, 354, 371, 379, 386, 402, 410], 'P"><mml:semantics><mml:mi>P</mml:mi><mml:annotation': [16, 92, 112], 'encoding="application/x-tex">P</mml:annotation></mml:semantics></mml:math></inline-formula>with<inline-formula': [17], 'alttext="m"><mml:semantics><mml:mi>m</mml:mi><mml:annotation': [20], 'encoding="application/x-tex">m</mml:annotation></mml:semantics></mml:math></inline-formula>facets': [21], 'an<inline-formula': [22], 'alttext="left-parenthesis': [25], 'm': [26], 'plus': [27], 'n': [28], 'right-parenthesis"><mml:semantics><mml:mrow><mml:mo': [29], 'stretchy="false">(</mml:mo><mml:mi>m</mml:mi><mml:mo>+</mml:mo><mml:mi>n</mml:mi><mml:mo': [30], 'stretchy="false">)</mml:mo></mml:mrow><mml:annotation': [31, 165, 197, 436], 'encoding="application/x-tex">(m+n)</mml:annotation></mml:semantics></mml:math></inline-formula>-dimensional': [32], 'moment-angle': [33], 'manifold<inline-formula': [34], 'alttext="script': [37, 65], 'upper': [38, 41, 66, 69, 73, 146, 149, 154, 178, 181, 186, 246, 311, 417, 420, 425], 'Z': [39, 67, 147, 155, 179, 187, 418, 426], 'Subscript': [40, 68, 148, 180, 419], 'P"><mml:semantics><mml:msub><mml:mrow': [42], 'class="MJX-TeXAtom-ORD"><mml:mi': [43, 77, 160, 163, 192, 195, 249, 314, 431, 434], 'class="MJX-tex-caligraphic"': [44, 78, 161, 193, 432], 'mathvariant="script">Z</mml:mi></mml:mrow><mml:mi>P</mml:mi></mml:msub><mml:annotation': [45], 'encoding="application/x-tex">\\mathcal': [46, 81], '{Z}_P</mml:annotation></mml:semantics></mml:math></inline-formula>with': [47], 'an': [48, 339, 346, 441], 'action': [49], 'of': [50, 86, 106, 303, 322, 405, 443], 'the': [51, 96, 134, 268, 335, 444], 'compact': [52], 'torus': [53], '<inline-formula': [54, 127, 242, 307], 'T': [58, 74], 'Superscript': [59, 75, 141, 173, 412], 'm"><mml:semantics><mml:msup><mml:mi>T</mml:mi><mml:mi>m</mml:mi></mml:msup><mml:annotation': [60], 'encoding="application/x-tex">T^m</mml:annotation></mml:semantics></mml:math></inline-formula>such': [61], 'that<inline-formula': [62], 'P': [70, 150, 380, 421], 'Baseline': [71, 143, 151, 175, 183, 414, 422], 'slash': [72], 'm"><mml:semantics><mml:mrow><mml:msub><mml:mrow': [76], 'mathvariant="script">Z</mml:mi></mml:mrow><mml:mi>P</mml:mi></mml:msub><mml:mrow': [79], 'class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mi>m</mml:mi></mml:msup></mml:mrow><mml:annotation': [80], '{Z}_P/T^m</mml:annotation></mml:semantics></mml:math></inline-formula>is': [82], 'a': [83, 107, 320, 358], 'polytope': [85, 342, 350], 'type<inline-formula': [88], 'encoding="application/x-tex">P</mml:annotation></mml:semantics></mml:math></inline-formula>.': [93], 'We': [94, 206, 283, 332, 389, 396], 'study': [95, 207], 'notion': [97], 'of<inline-formula': [98, 209], 'B"><mml:semantics><mml:mi>B</mml:mi><mml:annotation': [102, 118, 281, 355, 387, 403], 'encoding="application/x-tex">B</mml:annotation></mml:semantics></mml:math></inline-formula>-rigidity.': [103], 'A': [104, 372], 'property': [105], 'encoding="application/x-tex">P</mml:annotation></mml:semantics></mml:math></inline-formula>is': [113], 'called<inline-formula': [114], 'encoding="application/x-tex">B</mml:annotation></mml:semantics></mml:math></inline-formula>-rigid': [119], 'if': [120], 'each': [121], 'simple<inline-formula': [122], 'encoding="application/x-tex">n</mml:annotation></mml:semantics></mml:math></inline-formula>-polytope': [126], 'Q"><mml:semantics><mml:mi>Q</mml:mi><mml:annotation': [131], 'encoding="application/x-tex">Q</mml:annotation></mml:semantics></mml:math></inline-formula>such': [132], 'that': [133, 231, 267, 334, 362], 'graded': [135], 'rings<inline-formula': [136], 'H': [140, 172, 411], 'asterisk': [142, 174, 413], 'left-parenthesis': [144, 176, 415], 'script': [145, 177, 416], 'comma': [152, 184, 423], 'double-struck': [153, 185, 424], 'right-parenthesis"><mml:semantics><mml:mrow><mml:msup><mml:mi>H</mml:mi><mml:mo>∗<!--': [156, 188, 427], '∗': [157, 189, 428], '--></mml:mo></mml:msup><mml:mo': [158, 190, 429], 'stretchy="false">(</mml:mo><mml:msub><mml:mrow': [159, 191, 430], 'mathvariant="script">Z</mml:mi></mml:mrow><mml:mi>P</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mrow': [162, 433], 'mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mo': [164, 196, 435], 'encoding="application/x-tex">H^*(\\mathcal': [166, 198, 437], '{Z}_P,\\mathbb': [167, 438], 'Z)</mml:annotation></mml:semantics></mml:math></inline-formula>and<inline-formula': [168], 'Q': [182], 'mathvariant="script">Z</mml:mi></mml:mrow><mml:mi>Q</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mrow': [194], '{Z}_Q,\\mathbb': [199], 'Z)</mml:annotation></mml:semantics></mml:math></inline-formula>are': [200], 'isomorphic': [201], 'also': [202], 'has': [203], 'this': [204], 'property.': [205], 'families': [208, 224], 'alttext="3"><mml:semantics><mml:mn>3</mml:mn><mml:annotation': [212, 366], 'encoding="application/x-tex">3</mml:annotation></mml:semantics></mml:math></inline-formula>-dimensional': [213, 367], 'polytopes': [214, 227, 233, 238, 254, 257, 302, 326], 'defined': [215], 'by': [216], 'their': [217], 'cyclic<inline-formula': [218], 'alttext="k"><mml:semantics><mml:mi>k</mml:mi><mml:annotation': [221], 'encoding="application/x-tex">k</mml:annotation></mml:semantics></mml:math></inline-formula>-edge-connectivity.': [222], 'These': [223], 'include': [225, 255], 'flag': [226, 272], 'and': [228, 261, 273, 343], 'Pogorelov': [229, 253, 276, 287, 325, 341, 349, 394], 'polytopes,': [230, 288], 'is,': [232], 'realizable': [234], 'as': [235], 'bounded': [236], 'right-angled': [237, 301, 330], 'in': [239, 306], 'Lobachevsky': [240], 'space': [241], 'alttext="double-struck': [245, 310], 'L': [247, 312], 'cubed"><mml:semantics><mml:msup><mml:mrow': [248, 313], 'mathvariant="double-struck">L</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msup><mml:annotation': [250, 315], 'encoding="application/x-tex">\\mathbb': [251, 316], 'L^3</mml:annotation></mml:semantics></mml:math></inline-formula>.': [252, 317], 'fullerenes—simple': [256], 'with': [258], 'only': [259], 'pentagonal': [260], 'hexagonal': [262], 'faces.': [263], 'It': [264], 'is': [265, 319], 'known': [266, 392], 'properties': [269, 336], 'be': [271, 275, 338, 345], 'are<inline-formula': [277, 351], 'encoding="application/x-tex">B</mml:annotation></mml:semantics></mml:math></inline-formula>-rigid.': [282, 356, 388], 'focus': [284], 'on': [285], 'almost': [286, 324, 340, 348], 'which': [289], 'are': [290], 'strongly': [291], 'cyclically<inline-formula': [292], 'alttext="4"><mml:semantics><mml:mn>4</mml:mn><mml:annotation': [295], 'encoding="application/x-tex">4</mml:annotation></mml:semantics></mml:math></inline-formula>-edge-connected': [296], 'polytopes.': [297, 331, 395], 'They': [298], 'correspond': [299], 'finite': [304], 'volume': [305], 'There': [318], 'subfamily': [321], 'ideal': [323, 329, 347], 'corresponding': [327], 'prove': [333, 440], 'As': [357], 'corollary,': [359], 'we': [360], 'obtain': [361, 397], 'the<inline-formula': [363], 'associahedron<inline-formula': [368], 's': [373], 'cubed"><mml:semantics><mml:mrow><mml:mi>A</mml:mi><mml:msup><mml:mi>s</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:mrow><mml:annotation': [374], 'encoding="application/x-tex">As^3</mml:annotation></mml:semantics></mml:math></inline-formula>and': [375], 'permutohedron<inline-formula': [376], 'e': [381], 'cubed"><mml:semantics><mml:mrow><mml:mi>P</mml:mi><mml:msup><mml:mi>e</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:mrow><mml:annotation': [382], 'encoding="application/x-tex">Pe^3</mml:annotation></mml:semantics></mml:math></inline-formula>are<inline-formula': [383], 'generalize': [390], 'methods': [391], 'for': [393], 'results': [398], 'on<inline-formula': [399], 'encoding="application/x-tex">B</mml:annotation></mml:semantics></mml:math></inline-formula>-rigidity': [404], 'subsets': [406], 'in<inline-formula': [407], 'Z)</mml:annotation></mml:semantics></mml:math></inline-formula>and': [439], 'analog': [442], 'so-called': [445], 'separable': [446], 'circuit': [447], 'condition': [448], '(SCC).': [449]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3204693605', 'counts_by_year': [{'year': 2023, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 2}, {'year': 2021, 'cited_by_count': 1}], 'updated_date': '2024-12-15T23:47:13.315974', 'created_date': '2021-10-11'}