Abstract:In this paper, on 4-spheres equipped with Riemannian metrics we study some integral conformal invariants, the sign and size of which under Ricci flow characterize the standard 4-sphere. We obtain a co...In this paper, on 4-spheres equipped with Riemannian metrics we study some integral conformal invariants, the sign and size of which under Ricci flow characterize the standard 4-sphere. We obtain a conformal gap theorem, and for Yamabe metrics of positive scalar curvature with L^2 norm of the Weyl tensor of the metric suitably small, we establish the monotonic decay of the L^p norm for certain p>2 of the reduced curvature tensor along the normalized Ricci flow, with the metric converging exponentially to the standard 4-sphere.Read More
Title: $Some aspects of Ricci flow on the 4-sphere
Abstract: In this paper, on 4-spheres equipped with Riemannian metrics we study some integral conformal invariants, the sign and size of which under Ricci flow characterize the standard 4-sphere. We obtain a conformal gap theorem, and for Yamabe metrics of positive scalar curvature with L^2 norm of the Weyl tensor of the metric suitably small, we establish the monotonic decay of the L^p norm for certain p>2 of the reduced curvature tensor along the normalized Ricci flow, with the metric converging exponentially to the standard 4-sphere.