Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3198973722', 'doi': 'https://doi.org/10.1080/01621459.2021.1982723', 'title': 'Hamiltonian-Assisted Metropolis Sampling', 'display_name': 'Hamiltonian-Assisted Metropolis Sampling', 'publication_year': 2021, 'publication_date': '2021-09-21', 'ids': {'openalex': 'https://openalex.org/W3198973722', 'doi': 'https://doi.org/10.1080/01621459.2021.1982723', 'mag': '3198973722'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1080/01621459.2021.1982723', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4394736638', 'display_name': 'Journal of the American Statistical Association', 'issn_l': '0162-1459', 'issn': ['0162-1459', '1537-274X'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/2005.08159', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5068704185', 'display_name': 'Zexi Song', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I102322142', 'display_name': 'Rutgers, The State University of New Jersey', 'ror': 'https://ror.org/05vt9qd57', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I102322142']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Zexi Song', 'raw_affiliation_strings': ['Department of Statistics, Rutgers University, Piscataway, NJ'], 'affiliations': [{'raw_affiliation_string': 'Department of Statistics, Rutgers University, Piscataway, NJ', 'institution_ids': ['https://openalex.org/I102322142']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5081020863', 'display_name': 'Zhiqiang Tan', 'orcid': 'https://orcid.org/0000-0003-1780-6839'}, 'institutions': [{'id': 'https://openalex.org/I102322142', 'display_name': 'Rutgers, The State University of New Jersey', 'ror': 'https://ror.org/05vt9qd57', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I102322142']}], 'countries': ['US'], 'is_corresponding': True, 'raw_author_name': 'Zhiqiang Tan', 'raw_affiliation_strings': ['Department of Statistics, Rutgers University, Piscataway, NJ'], 'affiliations': [{'raw_affiliation_string': 'Department of Statistics, Rutgers University, Piscataway, NJ', 'institution_ids': ['https://openalex.org/I102322142']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5081020863'], 'corresponding_institution_ids': ['https://openalex.org/I102322142'], 'apc_list': None, 'apc_paid': None, 'fwci': 0.496, 'has_fulltext': False, 'cited_by_count': 3, 'citation_normalized_percentile': {'value': 0.592218, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 72, 'max': 76}, 'biblio': {'volume': '118', 'issue': '542', 'first_page': '1176', 'last_page': '1194'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10683', 'display_name': 'Mass Spectrometry Techniques and Applications', 'score': 0.9911, 'subfield': {'id': 'https://openalex.org/subfields/1607', 'display_name': 'Spectroscopy'}, 'field': {'id': 'https://openalex.org/fields/16', 'display_name': 'Chemistry'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10044', 'display_name': 'Protein Structure and Dynamics', 'score': 0.9829, 'subfield': {'id': 'https://openalex.org/subfields/1312', 'display_name': 'Molecular Biology'}, 'field': {'id': 'https://openalex.org/fields/13', 'display_name': 'Biochemistry, Genetics and Molecular Biology'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/metropolis–hastings-algorithm', 'display_name': 'Metropolis–Hastings algorithm', 'score': 0.75937724}, {'id': 'https://openalex.org/keywords/rejection-sampling', 'display_name': 'Rejection sampling', 'score': 0.72007865}, {'id': 'https://openalex.org/keywords/hamiltonian', 'display_name': 'Hamiltonian (control theory)', 'score': 0.45079875}, {'id': 'https://openalex.org/keywords/umbrella-sampling', 'display_name': 'Umbrella sampling', 'score': 0.4129312}], 'concepts': [{'id': 'https://openalex.org/C111350023', 'wikidata': 'https://www.wikidata.org/wiki/Q1191869', 'display_name': 'Markov chain Monte Carlo', 'level': 3, 'score': 0.8347562}, {'id': 'https://openalex.org/C204693719', 'wikidata': 'https://www.wikidata.org/wiki/Q910810', 'display_name': 'Metropolis–Hastings algorithm', 'level': 4, 'score': 0.75937724}, {'id': 'https://openalex.org/C187192777', 'wikidata': 'https://www.wikidata.org/wiki/Q381699', 'display_name': 'Rejection sampling', 'level': 5, 'score': 0.72007865}, {'id': 'https://openalex.org/C13153151', 'wikidata': 'https://www.wikidata.org/wiki/Q1639846', 'display_name': 'Hybrid Monte Carlo', 'level': 4, 'score': 0.65641695}, {'id': 'https://openalex.org/C140779682', 'wikidata': 'https://www.wikidata.org/wiki/Q210868', 'display_name': 'Sampling (signal processing)', 'level': 3, 'score': 0.5659543}, {'id': 'https://openalex.org/C19499675', 'wikidata': 'https://www.wikidata.org/wiki/Q232207', 'display_name': 'Monte Carlo method', 'level': 2, 'score': 0.5575451}, {'id': 'https://openalex.org/C163716315', 'wikidata': 'https://www.wikidata.org/wiki/Q901177', 'display_name': 'Gaussian', 'level': 2, 'score': 0.55604035}, {'id': 'https://openalex.org/C98763669', 'wikidata': 'https://www.wikidata.org/wiki/Q176645', 'display_name': 'Markov chain', 'level': 2, 'score': 0.5464429}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.50786144}, {'id': 'https://openalex.org/C170593435', 'wikidata': 'https://www.wikidata.org/wiki/Q4128565', 'display_name': 'Slice sampling', 'level': 4, 'score': 0.49528423}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.4581425}, {'id': 'https://openalex.org/C130787639', 'wikidata': 'https://www.wikidata.org/wiki/Q5645293', 'display_name': 'Hamiltonian (control theory)', 'level': 2, 'score': 0.45079875}, {'id': 'https://openalex.org/C52740198', 'wikidata': 'https://www.wikidata.org/wiki/Q1539564', 'display_name': 'Importance sampling', 'level': 3, 'score': 0.44655976}, {'id': 'https://openalex.org/C121194460', 'wikidata': 'https://www.wikidata.org/wiki/Q856741', 'display_name': 'Random walk', 'level': 2, 'score': 0.44122833}, {'id': 'https://openalex.org/C28826006', 'wikidata': 'https://www.wikidata.org/wiki/Q33521', 'display_name': 'Applied mathematics', 'level': 1, 'score': 0.4392305}, {'id': 'https://openalex.org/C121864883', 'wikidata': 'https://www.wikidata.org/wiki/Q677916', 'display_name': 'Statistical physics', 'level': 1, 'score': 0.43880704}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.4139796}, {'id': 'https://openalex.org/C128747166', 'wikidata': 'https://www.wikidata.org/wiki/Q7881414', 'display_name': 'Umbrella sampling', 'level': 3, 'score': 0.4129312}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.39017674}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.15493917}, {'id': 'https://openalex.org/C59593255', 'wikidata': 'https://www.wikidata.org/wiki/Q901663', 'display_name': 'Molecular dynamics', 'level': 2, 'score': 0.12106496}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.11357111}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.09009713}, {'id': 'https://openalex.org/C106131492', 'wikidata': 'https://www.wikidata.org/wiki/Q3072260', 'display_name': 'Filter (signal processing)', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1080/01621459.2021.1982723', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4394736638', 'display_name': 'Journal of the American Statistical Association', 'issn_l': '0162-1459', 'issn': ['0162-1459', '1537-274X'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/2005.08159', 'pdf_url': 'https://arxiv.org/pdf/2005.08159', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/2005.08159', 'pdf_url': 'https://arxiv.org/pdf/2005.08159', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'score': 0.8, 'id': 'https://metadata.un.org/sdg/11', 'display_name': 'Sustainable cities and communities'}], 'grants': [], 'datasets': ['https://openalex.org/W4394242081', 'https://openalex.org/W4394272506'], 'versions': [], 'referenced_works_count': 44, 'referenced_works': ['https://openalex.org/W1492534149', 'https://openalex.org/W1529540236', 'https://openalex.org/W1545319692', 'https://openalex.org/W1752868210', 'https://openalex.org/W1840847274', 'https://openalex.org/W1872439012', 'https://openalex.org/W1969798710', 'https://openalex.org/W1977671418', 'https://openalex.org/W1981457167', 'https://openalex.org/W1983452151', 'https://openalex.org/W1997497721', 'https://openalex.org/W2011175304', 'https://openalex.org/W2035081607', 'https://openalex.org/W2045343847', 'https://openalex.org/W2056760934', 'https://openalex.org/W2059448777', 'https://openalex.org/W2064001816', 'https://openalex.org/W2073658284', 'https://openalex.org/W2080515327', 'https://openalex.org/W2089657469', 'https://openalex.org/W2113624891', 'https://openalex.org/W2136796925', 'https://openalex.org/W2138309709', 'https://openalex.org/W2149239231', 'https://openalex.org/W2152657433', 'https://openalex.org/W2153811005', 'https://openalex.org/W2320513108', 'https://openalex.org/W2335428857', 'https://openalex.org/W2764984163', 'https://openalex.org/W2954040150', 'https://openalex.org/W2963004024', 'https://openalex.org/W2963561977', 'https://openalex.org/W2963977107', 'https://openalex.org/W2964155901', 'https://openalex.org/W2969325895', 'https://openalex.org/W3017508631', 'https://openalex.org/W3098664781', 'https://openalex.org/W3101211039', 'https://openalex.org/W3102212431', 'https://openalex.org/W3104370808', 'https://openalex.org/W3104537784', 'https://openalex.org/W3106290096', 'https://openalex.org/W3106335019', 'https://openalex.org/W621546036'], 'related_works': ['https://openalex.org/W4295750535', 'https://openalex.org/W4246060305', 'https://openalex.org/W3097509027', 'https://openalex.org/W2783865284', 'https://openalex.org/W2760229162', 'https://openalex.org/W2539839227', 'https://openalex.org/W2059147320', 'https://openalex.org/W2003732947', 'https://openalex.org/W1593554773', 'https://openalex.org/W105676162'], 'abstract_inverted_index': {'Various': [0], 'Markov': [1], 'chain': [2], 'Monte': [3, 27], 'Carlo': [4], '(MCMC)': [5], 'methods': [6], 'are': [7, 65], 'studied': [8], 'to': [9, 33, 67, 120], 'improve': [10], 'upon': [11], 'random': [12], 'walk': [13], 'Metropolis': [14, 48], 'sampling,': [15, 136], 'for': [16, 105], 'simulation': [17], 'from': [18], 'complex': [19], 'distributions.': [20], 'Examples': [21], 'include': [22], 'Metropolis-adjusted': [23], 'Langevin': [24, 35], 'algorithms,': [25, 45], 'Hamiltonian': [26], 'Carlo,': [28], 'and': [29, 51, 59], 'other': [30, 100], 'algorithms': [31, 55, 64, 119, 168, 175], 'related': [32], 'underdamped': [34], 'dynamics.': [36], 'We': [37, 160], 'propose': [38], 'a': [39, 80, 102, 106, 110, 131, 146], 'broad': [40], 'class': [41], 'of': [42, 96, 133, 143, 156], 'irreversible': [43, 94, 157], 'sampling': [44, 49], 'called': [46], 'Hamiltonian-assisted': [47], '(HAMS),': [50], 'develop': [52], 'two': [53, 70], 'specific': [54], 'with': [56, 79, 109, 123], 'appropriate': [57], 'tuning': [58], 'preconditioning': [60, 179], 'strategies.': [61], 'Our': [62], 'HAMS': [63, 144], 'designed': [66], 'simultaneously': [68], 'achieve': [69], 'distinctive': [71], 'properties,': [72], 'while': [73], 'using': [74, 176], 'an': [75, 83, 93], 'augmented': [76], 'target': [77, 108], 'density': [78], 'momentum': [81], 'as': [82], 'auxiliary': [84], 'variable.': [85], 'One': [86], 'is': [87, 101], 'generalized': [88, 134], 'detailed': [89], 'balance,': [90], 'which': [91, 137], 'induces': [92], 'exploration': [95], 'the': [97, 166, 177], 'target.': [98], 'The': [99], 'rejection-free': [103], 'property': [104, 115], 'Gaussian': [107], 'prespecified': [111], 'variance': [112], 'matrix.': [113], 'This': [114], 'allows': [116], 'our': [117, 141], 'preconditioned': [118], 'perform': [121], 'satisfactorily': [122], 'relatively': [124], 'large': [125], 'step': [126], 'sizes.': [127], 'Furthermore,': [128], 'we': [129], 'formulate': [130], 'framework': [132], 'Metropolis–Hastings': [135], 'not': [138], 'only': [139], 'highlights': [140], 'construction': [142], 'at': [145], 'more': [147], 'abstract': [148], 'level,': [149], 'but': [150], 'also': [151], 'facilitates': [152], 'possible': [153], 'further': [154], 'development': [155], 'MCMC': [158], 'algorithms.': [159], 'present': [161], 'several': [162], 'numerical': [163], 'experiments,': [164], 'where': [165], 'proposed': [167], 'consistently': [169], 'yield': [170], 'superior': [171], 'results': [172], 'among': [173], 'existing': [174], 'same': [178], 'schemes.': [180]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3198973722', 'counts_by_year': [{'year': 2024, 'cited_by_count': 2}, {'year': 2022, 'cited_by_count': 1}], 'updated_date': '2024-12-15T17:49:36.325045', 'created_date': '2021-09-27'}