Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3196140453', 'doi': 'https://doi.org/10.1109/access.2021.3105801', 'title': 'Learning Sensor Interdependencies for IMU-to-Segment Assignment', 'display_name': 'Learning Sensor Interdependencies for IMU-to-Segment Assignment', 'publication_year': 2021, 'publication_date': '2021-01-01', 'ids': {'openalex': 'https://openalex.org/W3196140453', 'doi': 'https://doi.org/10.1109/access.2021.3105801', 'mag': '3196140453'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1109/access.2021.3105801', 'pdf_url': 'https://ieeexplore.ieee.org/ielx7/6287639/9312710/09516022.pdf', 'source': {'id': 'https://openalex.org/S2485537415', 'display_name': 'IEEE Access', 'issn_l': '2169-3536', 'issn': ['2169-3536'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'doaj'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'https://ieeexplore.ieee.org/ielx7/6287639/9312710/09516022.pdf', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5028728212', 'display_name': 'Tomoya Kaichi', 'orcid': 'https://orcid.org/0000-0001-6765-9238'}, 'institutions': [{'id': 'https://openalex.org/I203951103', 'display_name': 'Keio University', 'ror': 'https://ror.org/02kn6nx58', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I203951103']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Tomoya Kaichi', 'raw_affiliation_strings': ['Graduate School of Science and Technology, Keio University, Yokohama, Japan'], 'affiliations': [{'raw_affiliation_string': 'Graduate School of Science and Technology, Keio University, Yokohama, Japan', 'institution_ids': ['https://openalex.org/I203951103']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5083189322', 'display_name': 'Tsubasa Maruyama', 'orcid': 'https://orcid.org/0000-0003-0628-4828'}, 'institutions': [{'id': 'https://openalex.org/I73613424', 'display_name': 'National Institute of Advanced Industrial Science and Technology', 'ror': 'https://ror.org/01703db54', 'country_code': 'JP', 'type': 'government', 'lineage': ['https://openalex.org/I73613424']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Tsubasa Maruyama', 'raw_affiliation_strings': ['Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Japan'], 'affiliations': [{'raw_affiliation_string': 'Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Japan', 'institution_ids': ['https://openalex.org/I73613424']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5011350023', 'display_name': 'Mitsunori Tada', 'orcid': 'https://orcid.org/0000-0001-6784-2016'}, 'institutions': [{'id': 'https://openalex.org/I73613424', 'display_name': 'National Institute of Advanced Industrial Science and Technology', 'ror': 'https://ror.org/01703db54', 'country_code': 'JP', 'type': 'government', 'lineage': ['https://openalex.org/I73613424']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Mitsunori Tada', 'raw_affiliation_strings': ['Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Japan'], 'affiliations': [{'raw_affiliation_string': 'Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Japan', 'institution_ids': ['https://openalex.org/I73613424']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5005819073', 'display_name': 'Hideo Saitô', 'orcid': 'https://orcid.org/0000-0002-2421-9862'}, 'institutions': [{'id': 'https://openalex.org/I203951103', 'display_name': 'Keio University', 'ror': 'https://ror.org/02kn6nx58', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I203951103']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Hideo Saito', 'raw_affiliation_strings': ['Graduate School of Science and Technology, Keio University, Yokohama, Japan'], 'affiliations': [{'raw_affiliation_string': 'Graduate School of Science and Technology, Keio University, Yokohama, Japan', 'institution_ids': ['https://openalex.org/I203951103']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': {'value': 1850, 'currency': 'USD', 'value_usd': 1850, 'provenance': 'doaj'}, 'apc_paid': {'value': 1850, 'currency': 'USD', 'value_usd': 1850, 'provenance': 'doaj'}, 'fwci': 0.102, 'has_fulltext': False, 'cited_by_count': 1, 'citation_normalized_percentile': {'value': 0.342289, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 57, 'max': 67}, 'biblio': {'volume': '9', 'issue': None, 'first_page': '116440', 'last_page': '116452'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10812', 'display_name': 'Human Pose and Action Recognition', 'score': 0.9962, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10812', 'display_name': 'Human Pose and Action Recognition', 'score': 0.9962, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12740', 'display_name': 'Gait Recognition and Analysis', 'score': 0.9868, 'subfield': {'id': 'https://openalex.org/subfields/2204', 'display_name': 'Biomedical Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10444', 'display_name': 'Context-Aware Activity Recognition Systems', 'score': 0.9845, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/units-of-measurement', 'display_name': 'Units of measurement', 'score': 0.77358806}, {'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.5359185}, {'id': 'https://openalex.org/keywords/activity-recognition', 'display_name': 'Activity Recognition', 'score': 0.49224702}], 'concepts': [{'id': 'https://openalex.org/C79061980', 'wikidata': 'https://www.wikidata.org/wiki/Q941680', 'display_name': 'Inertial measurement unit', 'level': 2, 'score': 0.9516799}, {'id': 'https://openalex.org/C151233233', 'wikidata': 'https://www.wikidata.org/wiki/Q47574', 'display_name': 'Units of measurement', 'level': 2, 'score': 0.77358806}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.758629}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.7284747}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.6875687}, {'id': 'https://openalex.org/C173386949', 'wikidata': 'https://www.wikidata.org/wiki/Q192735', 'display_name': 'Inertial frame of reference', 'level': 2, 'score': 0.55153525}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.5359185}, {'id': 'https://openalex.org/C104114177', 'wikidata': 'https://www.wikidata.org/wiki/Q79782', 'display_name': 'Motion (physics)', 'level': 2, 'score': 0.51346904}, {'id': 'https://openalex.org/C121687571', 'wikidata': 'https://www.wikidata.org/wiki/Q4677630', 'display_name': 'Activity recognition', 'level': 2, 'score': 0.49224702}, {'id': 'https://openalex.org/C19768560', 'wikidata': 'https://www.wikidata.org/wiki/Q320727', 'display_name': 'Dependency (UML)', 'level': 2, 'score': 0.4234904}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1109/access.2021.3105801', 'pdf_url': 'https://ieeexplore.ieee.org/ielx7/6287639/9312710/09516022.pdf', 'source': {'id': 'https://openalex.org/S2485537415', 'display_name': 'IEEE Access', 'issn_l': '2169-3536', 'issn': ['2169-3536'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://doaj.org/article/0f792a07a3c3448e9ac00cc801899b58', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306401280', 'display_name': 'DOAJ (DOAJ: Directory of Open Access Journals)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1109/access.2021.3105801', 'pdf_url': 'https://ieeexplore.ieee.org/ielx7/6287639/9312710/09516022.pdf', 'source': {'id': 'https://openalex.org/S2485537415', 'display_name': 'IEEE Access', 'issn_l': '2169-3536', 'issn': ['2169-3536'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [{'funder': 'https://openalex.org/F4320334764', 'funder_display_name': 'Japan Society for the Promotion of Science', 'award_id': '19J22153'}], 'datasets': [], 'versions': [], 'referenced_works_count': 49, 'referenced_works': ['https://openalex.org/W1510660243', 'https://openalex.org/W1924770834', 'https://openalex.org/W2002204150', 'https://openalex.org/W2008753476', 'https://openalex.org/W2045218333', 'https://openalex.org/W2109226248', 'https://openalex.org/W2270470215', 'https://openalex.org/W2296432816', 'https://openalex.org/W2557169239', 'https://openalex.org/W2560609797', 'https://openalex.org/W2620654588', 'https://openalex.org/W2754534665', 'https://openalex.org/W2767249564', 'https://openalex.org/W2767915528', 'https://openalex.org/W2768329905', 'https://openalex.org/W2783265305', 'https://openalex.org/W2784646928', 'https://openalex.org/W2791705895', 'https://openalex.org/W2896229066', 'https://openalex.org/W2896457183', 'https://openalex.org/W2896710418', 'https://openalex.org/W2897762618', 'https://openalex.org/W2898073175', 'https://openalex.org/W2946577492', 'https://openalex.org/W2954800863', 'https://openalex.org/W2962888833', 'https://openalex.org/W2963341956', 'https://openalex.org/W2963403868', 'https://openalex.org/W2964153986', 'https://openalex.org/W2964258748', 'https://openalex.org/W2971803174', 'https://openalex.org/W2982244969', 'https://openalex.org/W3003257820', 'https://openalex.org/W3015646649', 'https://openalex.org/W3037307633', 'https://openalex.org/W3039448353', 'https://openalex.org/W3046869313', 'https://openalex.org/W3048097099', 'https://openalex.org/W3088758915', 'https://openalex.org/W3089173771', 'https://openalex.org/W3096609285', 'https://openalex.org/W3101501459', 'https://openalex.org/W3103145119', 'https://openalex.org/W3133264589', 'https://openalex.org/W3162787701', 'https://openalex.org/W3184564979', 'https://openalex.org/W4214508443', 'https://openalex.org/W4385245566', 'https://openalex.org/W854541894'], 'related_works': ['https://openalex.org/W3196140453', 'https://openalex.org/W3044242125', 'https://openalex.org/W3016838864', 'https://openalex.org/W2978426962', 'https://openalex.org/W2768468910', 'https://openalex.org/W2766841671', 'https://openalex.org/W2382856674', 'https://openalex.org/W2037990170', 'https://openalex.org/W2029881158', 'https://openalex.org/W1967422967'], 'abstract_inverted_index': {'Due': [0], 'to': [1, 32, 35, 42, 55, 59, 66, 69, 117], 'the': [2, 14, 44, 73, 102, 105, 112, 115, 119, 123, 130, 135, 146, 174], 'recent': [3], 'technological': [4], 'advances': [5], 'in': [6], 'inertial': [7, 57], 'measurement': [8, 15], 'units': [9], '(IMUs),': [10], 'many': [11], 'applications': [12], 'for': [13, 179], 'of': [16, 72, 107], 'human': [17], 'motion': [18, 106, 139], 'using': [19, 149], 'multiple': [20], 'body-worn': [21], 'IMUs': [22], 'have': [23], 'been': [24], 'developed.': [25], 'In': [26], 'these': [27], 'applications,': [28], 'each': [29, 49], 'IMU': [30, 50, 131], 'has': [31], 'be': [33], 'attached': [34, 109], 'a': [36, 83, 90, 160], 'predefined': [37], 'body': [38, 45, 61], 'segment.': [39], 'A': [40], 'technique': [41], 'identify': [43], 'segment': [46], 'on': [47, 134], 'which': [48, 63], 'is': [51], 'mounted': [52], 'allows': [53], 'users': [54], 'attach': [56], 'sensors': [58], 'arbitrary': [60], 'segments,': [62], 'avoids': [64], 'having': [65], 'remeasure': [67], 'due': [68], 'incorrect': [70], 'attachment': [71], 'sensors.': [74, 165], 'We': [75, 143], 'address': [76], 'this': [77], 'IMU-to-segment': [78], 'assignment': [79], 'problem': [80], 'and': [81, 95, 111, 140, 151, 176, 182], 'propose': [82], 'novel': [84], 'end-to-end': [85], 'learning': [86], 'model': [87, 116, 127], 'that': [88, 169], 'incorporates': [89], 'global': [91, 138], 'feature': [92, 103], 'generation': [93], 'module': [94], 'an': [96], 'attention-based': [97], 'mechanism.': [98], 'The': [99, 125, 166], 'former': [100], 'extracts': [101], 'representing': [104], 'all': [108, 180], 'IMUs,': [110], 'latter': [113], 'enables': [114], 'learn': [118], 'dependency': [120], 'relationships': [121], 'between': [122], 'IMUs.': [124, 142], 'proposed': [126, 147], 'thus': [128], 'identifies': [129], 'placement': [132], 'based': [133], 'features': [136], 'from': [137], 'relevant': [141], 'quantitatively': [144], 'evaluated': [145], 'method': [148], 'synthetic': [150], 'real': [152], 'public': [153], 'datasets': [154, 181], 'with': [155], 'three': [156], 'sensor': [157, 183], 'configurations,': [158], 'including': [159], 'full-body': [161], 'configuration': [162], 'mounting': [163], '15': [164], 'results': [167], 'demonstrated': [168], 'our': [170], 'approach': [171], 'significantly': [172], 'outperformed': [173], 'conventional': [175], 'baseline': [177], 'methods': [178], 'configurations.': [184]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3196140453', 'counts_by_year': [{'year': 2023, 'cited_by_count': 1}], 'updated_date': '2024-12-12T06:07:50.192357', 'created_date': '2021-08-30'}