Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3153899207', 'doi': 'https://doi.org/10.18653/v1/2021.eacl-main.16', 'title': 'Dictionary-based Debiasing of Pre-trained Word Embeddings', 'display_name': 'Dictionary-based Debiasing of Pre-trained Word Embeddings', 'publication_year': 2021, 'publication_date': '2021-01-01', 'ids': {'openalex': 'https://openalex.org/W3153899207', 'doi': 'https://doi.org/10.18653/v1/2021.eacl-main.16', 'mag': '3153899207'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.18653/v1/2021.eacl-main.16', 'pdf_url': 'https://aclanthology.org/2021.eacl-main.16.pdf', 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'hybrid', 'oa_url': 'https://aclanthology.org/2021.eacl-main.16.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5005531754', 'display_name': 'Masahiro Kaneko', 'orcid': 'https://orcid.org/0000-0002-5117-5447'}, 'institutions': [{'id': 'https://openalex.org/I146655781', 'display_name': 'University of Liverpool', 'ror': 'https://ror.org/04xs57h96', 'country_code': 'GB', 'type': 'education', 'lineage': ['https://openalex.org/I146655781']}, {'id': 'https://openalex.org/I69740276', 'display_name': 'Tokyo Metropolitan University', 'ror': 'https://ror.org/00ws30h19', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I69740276']}, {'id': 'https://openalex.org/I1311688040', 'display_name': 'Amazon (United States)', 'ror': 'https://ror.org/04mv4n011', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1311688040']}], 'countries': ['GB', 'JP', 'US'], 'is_corresponding': False, 'raw_author_name': 'Masahiro Kaneko', 'raw_affiliation_strings': ['Tokyo Metropolitan University', 'University of Liverpool, Amazon'], 'affiliations': [{'raw_affiliation_string': 'University of Liverpool, Amazon', 'institution_ids': ['https://openalex.org/I146655781', 'https://openalex.org/I1311688040']}, {'raw_affiliation_string': 'Tokyo Metropolitan University', 'institution_ids': ['https://openalex.org/I69740276']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5073503574', 'display_name': 'Danushka Bollegala', 'orcid': 'https://orcid.org/0000-0003-4476-7003'}, 'institutions': [{'id': 'https://openalex.org/I69740276', 'display_name': 'Tokyo Metropolitan University', 'ror': 'https://ror.org/00ws30h19', 'country_code': 'JP', 'type': 'education', 'lineage': ['https://openalex.org/I69740276']}, {'id': 'https://openalex.org/I1311688040', 'display_name': 'Amazon (United States)', 'ror': 'https://ror.org/04mv4n011', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1311688040']}, {'id': 'https://openalex.org/I146655781', 'display_name': 'University of Liverpool', 'ror': 'https://ror.org/04xs57h96', 'country_code': 'GB', 'type': 'education', 'lineage': ['https://openalex.org/I146655781']}], 'countries': ['GB', 'JP', 'US'], 'is_corresponding': False, 'raw_author_name': 'Danushka Bollegala', 'raw_affiliation_strings': ['Tokyo Metropolitan University', 'University of Liverpool, Amazon'], 'affiliations': [{'raw_affiliation_string': 'Tokyo Metropolitan University', 'institution_ids': ['https://openalex.org/I69740276']}, {'raw_affiliation_string': 'University of Liverpool, Amazon', 'institution_ids': ['https://openalex.org/I1311688040', 'https://openalex.org/I146655781']}]}], 'institution_assertions': [], 'countries_distinct_count': 3, 'institutions_distinct_count': 3, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 2.136, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 21, 'citation_normalized_percentile': {'value': 0.999914, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 93, 'max': 94}, 'biblio': {'volume': None, 'issue': None, 'first_page': '212', 'last_page': '223'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10181', 'display_name': 'Natural Language Processing Techniques', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10181', 'display_name': 'Natural Language Processing Techniques', 'score': 0.9996, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10028', 'display_name': 'Topic Modeling', 'score': 0.999, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12262', 'display_name': 'Hate Speech and Cyberbullying Detection', 'score': 0.9889, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/debiasing', 'display_name': 'Debiasing', 'score': 0.852514}, {'id': 'https://openalex.org/keywords/word-embedding', 'display_name': 'Word embedding', 'score': 0.63801676}, {'id': 'https://openalex.org/keywords/benchmark', 'display_name': 'Benchmark (surveying)', 'score': 0.56676775}, {'id': 'https://openalex.org/keywords/distributional-semantics', 'display_name': 'Distributional semantics', 'score': 0.55341667}], 'concepts': [{'id': 'https://openalex.org/C2779458634', 'wikidata': 'https://www.wikidata.org/wiki/Q24963715', 'display_name': 'Debiasing', 'level': 2, 'score': 0.852514}, {'id': 'https://openalex.org/C90805587', 'wikidata': 'https://www.wikidata.org/wiki/Q10944557', 'display_name': 'Word (group theory)', 'level': 2, 'score': 0.84190434}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.77960753}, {'id': 'https://openalex.org/C204321447', 'wikidata': 'https://www.wikidata.org/wiki/Q30642', 'display_name': 'Natural language processing', 'level': 1, 'score': 0.69999313}, {'id': 'https://openalex.org/C2777462759', 'wikidata': 'https://www.wikidata.org/wiki/Q18395344', 'display_name': 'Word embedding', 'level': 3, 'score': 0.63801676}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.6061798}, {'id': 'https://openalex.org/C185798385', 'wikidata': 'https://www.wikidata.org/wiki/Q1161707', 'display_name': 'Benchmark (surveying)', 'level': 2, 'score': 0.56676775}, {'id': 'https://openalex.org/C2778828372', 'wikidata': 'https://www.wikidata.org/wiki/Q5283209', 'display_name': 'Distributional semantics', 'level': 3, 'score': 0.55341667}, {'id': 'https://openalex.org/C41608201', 'wikidata': 'https://www.wikidata.org/wiki/Q980509', 'display_name': 'Embedding', 'level': 2, 'score': 0.55130386}, {'id': 'https://openalex.org/C118505674', 'wikidata': 'https://www.wikidata.org/wiki/Q42586063', 'display_name': 'Encoder', 'level': 2, 'score': 0.5138726}, {'id': 'https://openalex.org/C184337299', 'wikidata': 'https://www.wikidata.org/wiki/Q1437428', 'display_name': 'Semantics (computer science)', 'level': 2, 'score': 0.4982381}, {'id': 'https://openalex.org/C2778572836', 'wikidata': 'https://www.wikidata.org/wiki/Q380933', 'display_name': 'Space (punctuation)', 'level': 2, 'score': 0.43787232}, {'id': 'https://openalex.org/C28490314', 'wikidata': 'https://www.wikidata.org/wiki/Q189436', 'display_name': 'Speech recognition', 'level': 1, 'score': 0.34313944}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.16111854}, {'id': 'https://openalex.org/C130318100', 'wikidata': 'https://www.wikidata.org/wiki/Q2268914', 'display_name': 'Semantic similarity', 'level': 2, 'score': 0.1443637}, {'id': 'https://openalex.org/C15744967', 'wikidata': 'https://www.wikidata.org/wiki/Q9418', 'display_name': 'Psychology', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C13280743', 'wikidata': 'https://www.wikidata.org/wiki/Q131089', 'display_name': 'Geodesy', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C205649164', 'wikidata': 'https://www.wikidata.org/wiki/Q1071', 'display_name': 'Geography', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C188147891', 'wikidata': 'https://www.wikidata.org/wiki/Q147638', 'display_name': 'Cognitive science', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.18653/v1/2021.eacl-main.16', 'pdf_url': 'https://aclanthology.org/2021.eacl-main.16.pdf', 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/2101.09525', 'pdf_url': 'https://arxiv.org/pdf/2101.09525', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.18653/v1/2021.eacl-main.16', 'pdf_url': 'https://aclanthology.org/2021.eacl-main.16.pdf', 'source': None, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/10', 'score': 0.56, 'display_name': 'Reduced inequalities'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 72, 'referenced_works': ['https://openalex.org/W1503259811', 'https://openalex.org/W1522301498', 'https://openalex.org/W1569415500', 'https://openalex.org/W1807381799', 'https://openalex.org/W1832693441', 'https://openalex.org/W1854884267', 'https://openalex.org/W2038721957', 'https://openalex.org/W2067438047', 'https://openalex.org/W2080100102', 'https://openalex.org/W2095705004', 'https://openalex.org/W2100935296', 'https://openalex.org/W2137735870', 'https://openalex.org/W2140534852', 'https://openalex.org/W2141599568', 'https://openalex.org/W2142625445', 'https://openalex.org/W2153579005', 'https://openalex.org/W2154455818', 'https://openalex.org/W2250189634', 'https://openalex.org/W2250539671', 'https://openalex.org/W2251012068', 'https://openalex.org/W2264800663', 'https://openalex.org/W2483215953', 'https://openalex.org/W2493916176', 'https://openalex.org/W2752172973', 'https://openalex.org/W2758506174', 'https://openalex.org/W2793978524', 'https://openalex.org/W2798962680', 'https://openalex.org/W2803176955', 'https://openalex.org/W2888161220', 'https://openalex.org/W2889624842', 'https://openalex.org/W2891958973', 'https://openalex.org/W2893425640', 'https://openalex.org/W2896457183', 'https://openalex.org/W2897630418', 'https://openalex.org/W2921633540', 'https://openalex.org/W2922274844', 'https://openalex.org/W2926555354', 'https://openalex.org/W2942160782', 'https://openalex.org/W2949969209', 'https://openalex.org/W2950018712', 'https://openalex.org/W2950199579', 'https://openalex.org/W2950866572', 'https://openalex.org/W2952349219', 'https://openalex.org/W2953332543', 'https://openalex.org/W2954275542', 'https://openalex.org/W2962739339', 'https://openalex.org/W2962787423', 'https://openalex.org/W2963078909', 'https://openalex.org/W2963341956', 'https://openalex.org/W2963426755', 'https://openalex.org/W2963446520', 'https://openalex.org/W2963457723', 'https://openalex.org/W2963526187', 'https://openalex.org/W2963612262', 'https://openalex.org/W2963659646', 'https://openalex.org/W2963691697', 'https://openalex.org/W2963879260', 'https://openalex.org/W2964121744', 'https://openalex.org/W2964222246', 'https://openalex.org/W2970340602', 'https://openalex.org/W2970800693', 'https://openalex.org/W2971015127', 'https://openalex.org/W2971307358', 'https://openalex.org/W2972972637', 'https://openalex.org/W3035241006', 'https://openalex.org/W3037697022', 'https://openalex.org/W3118009250', 'https://openalex.org/W3122810052', 'https://openalex.org/W4231165370', 'https://openalex.org/W4288375898', 'https://openalex.org/W4294170691', 'https://openalex.org/W4320013820'], 'related_works': ['https://openalex.org/W4286432911', 'https://openalex.org/W4246455502', 'https://openalex.org/W3173577605', 'https://openalex.org/W3046869600', 'https://openalex.org/W3022552813', 'https://openalex.org/W2929149158', 'https://openalex.org/W2896498353', 'https://openalex.org/W2620816324', 'https://openalex.org/W2594230509', 'https://openalex.org/W2474773197'], 'abstract_inverted_index': {'Word': [0], 'embeddings': [1, 46, 99], 'trained': [2], 'on': [3, 169], 'large': [4], 'corpora': [5], 'have': [6], 'shown': [7], 'to': [8, 52, 79, 112, 144, 151], 'encode': [9], 'high': [10], 'levels': [11], 'of': [12, 28, 77, 85, 104, 117, 129, 140], 'unfair': [13, 181], 'discriminatory': [14], 'gender,': [15], 'racial,': [16], 'religious': [17], 'and': [18, 34, 88, 147], 'ethnic': [19], 'biases.': [20], 'In': [21], 'contrast,': [22], 'human-written': [23], 'dictionaries': [24], 'describe': [25], 'the': [26, 53, 61, 75, 83, 90, 105, 127, 130, 137, 141, 145, 152, 162, 175], 'meanings': [27], 'words': [29], 'in': [30, 82, 161, 184], 'a': [31, 40, 114], 'concise,': [32], 'objective': [33], 'an': [35, 110, 118], 'unbiased': [36, 97, 138], 'manner.': [37], 'We': [38], 'propose': [39], 'method': [41, 71, 177], 'for': [42], 'debiasing': [43], 'pre-trained': [44, 131, 163, 185], 'word': [45, 62, 86, 98, 120, 132, 142, 164, 186], 'using': [47], 'dictionaries,': [48], 'without': [49], 'requiring': [50], 'access': [51], 'original': [54], 'training': [55], 'resources': [56], 'or': [57], 'any': [58, 157], 'knowledge': [59], 'regarding': [60], 'embedding': [63, 121, 165], 'algorithms': [64], 'used.': [65], 'Unlike': [66], 'prior': [67], 'work,': [68], 'our': [69], 'proposed': [70, 176], 'does': [72], 'not': [73], 'require': [74], 'types': [76], 'biases': [78, 182], 'be': [80, 94], 'pre-defined': [81], 'form': [84], 'lists,': [87], 'learns': [89], 'constraints': [91], 'that': [92, 123, 174], 'must': [93], 'satisfied': [95], 'by': [96, 156], 'automatically': [100], 'from': [101], 'dictionary': [102], 'definitions': [103], 'words.': [106], 'Specifically,': [107], 'we': [108], 'learn': [109], 'encoder': [111], 'generate': [113], 'debiased': [115], 'version': [116], 'input': [119], 'such': [122], 'it': [124], '(a)': [125], 'retains': [126], 'semantics': [128], 'embedding,': [133], '(b)': [134], 'agrees': [135], 'with': [136], 'definition': [139], 'according': [143], 'dictionary,': [146], '(c)': [148], 'remains': [149], 'orthogonal': [150], 'vector': [153], 'space': [154], 'spanned': [155], 'biased': [158], 'basis': [159], 'vectors': [160], 'space.': [166], 'Experimental': [167], 'results': [168], 'standard': [170], 'benchmark': [171], 'datasets': [172], 'show': [173], 'can': [178], 'accurately': [179], 'remove': [180], 'encoded': [183], 'embeddings,': [187], 'while': [188], 'preserving': [189], 'useful': [190], 'semantics.': [191]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3153899207', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2023, 'cited_by_count': 8}, {'year': 2022, 'cited_by_count': 11}, {'year': 2021, 'cited_by_count': 1}], 'updated_date': '2025-01-07T08:18:39.055405', 'created_date': '2021-04-26'}