Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3122057397', 'doi': 'https://doi.org/10.1109/tkde.2021.3052150', 'title': 'MOLER: Incorporate Molecule-Level Reward to Enhance Deep Generative Model for Molecule Optimization', 'display_name': 'MOLER: Incorporate Molecule-Level Reward to Enhance Deep Generative Model for Molecule Optimization', 'publication_year': 2021, 'publication_date': '2021-01-21', 'ids': {'openalex': 'https://openalex.org/W3122057397', 'doi': 'https://doi.org/10.1109/tkde.2021.3052150', 'mag': '3122057397', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/36590707'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1109/tkde.2021.3052150', 'pdf_url': 'https://ieeexplore.ieee.org/ielx7/69/9913316/09330796.pdf', 'source': {'id': 'https://openalex.org/S30698027', 'display_name': 'IEEE Transactions on Knowledge and Data Engineering', 'issn_l': '1041-4347', 'issn': ['1041-4347', '1558-2191', '2326-3865'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'hybrid', 'oa_url': 'https://ieeexplore.ieee.org/ielx7/69/9913316/09330796.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5003226543', 'display_name': 'Tianfan Fu', 'orcid': 'https://orcid.org/0000-0002-5574-2541'}, 'institutions': [{'id': 'https://openalex.org/I130701444', 'display_name': 'Georgia Institute of Technology', 'ror': 'https://ror.org/01zkghx44', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I130701444']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Tianfan Fu', 'raw_affiliation_strings': ['Department of Computer Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA'], 'affiliations': [{'raw_affiliation_string': 'Department of Computer Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA', 'institution_ids': ['https://openalex.org/I130701444']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100645991', 'display_name': 'Cao Xiao', 'orcid': 'https://orcid.org/0000-0002-3869-6942'}, 'institutions': [{'id': 'https://openalex.org/I4210108991', 'display_name': 'IQVIA (United States)', 'ror': 'https://ror.org/01mk44223', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I4210108991']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Cao Xiao', 'raw_affiliation_strings': ['Analytics Center of Excellence, IQVIA, Cambridge, MA, USA'], 'affiliations': [{'raw_affiliation_string': 'Analytics Center of Excellence, IQVIA, Cambridge, MA, USA', 'institution_ids': ['https://openalex.org/I4210108991']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5030103228', 'display_name': 'Lucas M. Glass', 'orcid': 'https://orcid.org/0000-0001-6613-5205'}, 'institutions': [{'id': 'https://openalex.org/I4210108991', 'display_name': 'IQVIA (United States)', 'ror': 'https://ror.org/01mk44223', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I4210108991']}, {'id': 'https://openalex.org/I84392919', 'display_name': 'Temple University', 'ror': 'https://ror.org/00kx1jb78', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I84392919']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Lucas M. Glass', 'raw_affiliation_strings': ['Analytics Center of Excellence, IQVIA, Plymouth Meeting, PA, USA', 'Temple University, Philadelphia, PA, USA'], 'affiliations': [{'raw_affiliation_string': 'Analytics Center of Excellence, IQVIA, Plymouth Meeting, PA, USA', 'institution_ids': ['https://openalex.org/I4210108991']}, {'raw_affiliation_string': 'Temple University, Philadelphia, PA, USA', 'institution_ids': ['https://openalex.org/I84392919']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5084279065', 'display_name': 'Jimeng Sun', 'orcid': 'https://orcid.org/0000-0003-1512-6426'}, 'institutions': [{'id': 'https://openalex.org/I157725225', 'display_name': 'University of Illinois Urbana-Champaign', 'ror': 'https://ror.org/047426m28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I157725225']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Jimeng Sun', 'raw_affiliation_strings': ['Computer Science Department, University of Illinois, Urbana-Champaign, Champaign, IL, USA'], 'affiliations': [{'raw_affiliation_string': 'Computer Science Department, University of Illinois, Urbana-Champaign, Champaign, IL, USA', 'institution_ids': ['https://openalex.org/I157725225']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 4, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 1.456, 'has_fulltext': False, 'cited_by_count': 11, 'citation_normalized_percentile': {'value': 0.999883, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 88, 'max': 89}, 'biblio': {'volume': '34', 'issue': '11', 'first_page': '5459', 'last_page': '5471'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10211', 'display_name': 'Computational Drug Discovery Methods', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1703', 'display_name': 'Computational Theory and Mathematics'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10211', 'display_name': 'Computational Drug Discovery Methods', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1703', 'display_name': 'Computational Theory and Mathematics'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11948', 'display_name': 'Machine Learning in Materials Science', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/2505', 'display_name': 'Materials Chemistry'}, 'field': {'id': 'https://openalex.org/fields/25', 'display_name': 'Materials Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11407', 'display_name': 'Innovative Microfluidic and Catalytic Techniques Innovation', 'score': 0.9872, 'subfield': {'id': 'https://openalex.org/subfields/2204', 'display_name': 'Biomedical Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/generative-model', 'display_name': 'Generative model', 'score': 0.657839}, {'id': 'https://openalex.org/keywords/similarity', 'display_name': 'Similarity (geometry)', 'score': 0.4343814}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7263217}, {'id': 'https://openalex.org/C167966045', 'wikidata': 'https://www.wikidata.org/wiki/Q5532625', 'display_name': 'Generative model', 'level': 3, 'score': 0.657839}, {'id': 'https://openalex.org/C39890363', 'wikidata': 'https://www.wikidata.org/wiki/Q36108', 'display_name': 'Generative grammar', 'level': 2, 'score': 0.5490355}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.4541499}, {'id': 'https://openalex.org/C103278499', 'wikidata': 'https://www.wikidata.org/wiki/Q254465', 'display_name': 'Similarity (geometry)', 'level': 3, 'score': 0.4343814}, {'id': 'https://openalex.org/C2779960059', 'wikidata': 'https://www.wikidata.org/wiki/Q7113681', 'display_name': 'Overhead (engineering)', 'level': 2, 'score': 0.41545552}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 3, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1109/tkde.2021.3052150', 'pdf_url': 'https://ieeexplore.ieee.org/ielx7/69/9913316/09330796.pdf', 'source': {'id': 'https://openalex.org/S30698027', 'display_name': 'IEEE Transactions on Knowledge and Data Engineering', 'issn_l': '1041-4347', 'issn': ['1041-4347', '1558-2191', '2326-3865'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802662', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'acceptedVersion', 'is_accepted': True, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/36590707', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1109/tkde.2021.3052150', 'pdf_url': 'https://ieeexplore.ieee.org/ielx7/69/9913316/09330796.pdf', 'source': {'id': 'https://openalex.org/S30698027', 'display_name': 'IEEE Transactions on Knowledge and Data Engineering', 'issn_l': '1041-4347', 'issn': ['1041-4347', '1558-2191', '2326-3865'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 36, 'referenced_works': ['https://openalex.org/W1502922572', 'https://openalex.org/W1663973292', 'https://openalex.org/W1757990252', 'https://openalex.org/W1988037271', 'https://openalex.org/W2012618914', 'https://openalex.org/W2023818227', 'https://openalex.org/W2034549041', 'https://openalex.org/W2130942839', 'https://openalex.org/W2160592148', 'https://openalex.org/W2164707709', 'https://openalex.org/W2490662969', 'https://openalex.org/W2529996553', 'https://openalex.org/W2610148085', 'https://openalex.org/W2736601468', 'https://openalex.org/W2785542505', 'https://openalex.org/W2786722833', 'https://openalex.org/W2805002767', 'https://openalex.org/W2805177834', 'https://openalex.org/W2806351858', 'https://openalex.org/W2902415322', 'https://openalex.org/W2963121966', 'https://openalex.org/W2963173382', 'https://openalex.org/W2963445908', 'https://openalex.org/W2963676163', 'https://openalex.org/W2997058986', 'https://openalex.org/W3044897978', 'https://openalex.org/W3092427560', 'https://openalex.org/W3098269892', 'https://openalex.org/W3100751385', 'https://openalex.org/W3104956673', 'https://openalex.org/W3109916301', 'https://openalex.org/W3126570353', 'https://openalex.org/W3174976929', 'https://openalex.org/W3202117332', 'https://openalex.org/W4251194840', 'https://openalex.org/W4297951436'], 'related_works': ['https://openalex.org/W4387506531', 'https://openalex.org/W4380551139', 'https://openalex.org/W4365211920', 'https://openalex.org/W4317695495', 'https://openalex.org/W4283803360', 'https://openalex.org/W4238433571', 'https://openalex.org/W3174044702', 'https://openalex.org/W3014948380', 'https://openalex.org/W2967848559', 'https://openalex.org/W2280377497'], 'abstract_inverted_index': {'The': [0, 60, 121], 'goal': [1], 'of': [2, 37], 'molecular': [3, 51], 'optimization': [4], 'is': [5, 64, 135], 'to': [6, 10, 31, 56, 95, 104, 108, 118, 137, 152], 'generate': [7], 'molecules': [8, 43], 'similar': [9, 116], 'a': [11, 83, 115], 'target': [12], 'molecule': [13, 27, 81, 103, 113], 'but': [14], 'with': [15, 127, 141], 'better': [16], 'chemical': [17, 58], 'properties.': [18, 59], 'Deep': [19], 'generative': [20, 39, 69, 130], 'models': [21, 70], 'have': [22], 'shown': [23], 'great': [24], 'success': [25, 157], 'in': [26, 50, 156], 'optimization.': [28], 'However,': [29], 'due': [30], 'the': [32, 41, 48, 66, 79, 98, 101, 111, 119, 160], 'iterative': [33], 'local': [34], 'generation': [35, 76], 'process': [36], 'deep': [38, 68, 129], 'models,': [40], 'resulting': [42], 'can': [44, 124], 'significantly': [45], 'deviate': [46], 'from': [47], 'input': [49, 99], 'similarity': [52], 'and': [53, 100, 107, 170], 'size,': [54], 'leading': [55], 'poor': [57], 'key': [61], 'issue': [62], 'here': [63], 'that': [65, 148], 'existing': [67], 'restrict': [71], 'their': [72], 'attention': [73], 'on': [74, 164], 'substructure-level': [75], 'without': [77], 'considering': [78], 'entire': [80], 'as': [82], 'whole.': [84], 'To': [85], 'address': [86], 'this': [87], 'challenge,': [88], 'we': [89], 'propose': [90], 'Molecule-Level': [91], 'Reward': [92], 'functions': [93], '(MOLER)': [94], 'encourage': [96], '(1)': [97], 'generated': [102, 112], 'be': [105, 125], 'similar,': [106], 'ensure': [109], '(2)': [110], 'has': [114], 'size': [117], 'input.': [120], 'proposed': [122], 'method': [123, 163], 'combined': [126], 'various': [128], 'models.': [131], 'Policy': [132], 'gradient': [133], 'technique': [134], 'introduced': [136], 'optimize': [138], 'reward-based': [139], 'objectives': [140], 'small': [142], 'computational': [143], 'overhead.': [144], 'Empirical': [145], 'studies': [146], 'show': [147], 'MOLER': [149], 'achieves': [150], 'up': [151], '20.2%': [153], 'relative': [154], 'improvement': [155], 'rate': [158], 'over': [159], 'best': [161], 'baseline': [162], 'several': [165], 'properties,': [166], 'including': [167], 'QED,': [168], 'DRD2': [169], 'LogP.': [171]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3122057397', 'counts_by_year': [{'year': 2024, 'cited_by_count': 4}, {'year': 2023, 'cited_by_count': 2}, {'year': 2022, 'cited_by_count': 3}, {'year': 2021, 'cited_by_count': 2}], 'updated_date': '2024-12-15T18:37:28.774976', 'created_date': '2021-02-01'}