Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3110781278', 'doi': 'https://doi.org/10.1016/j.breast.2020.11.012', 'title': 'Artificial intelligence (AI) in breast cancer care - Leveraging multidisciplinary skills to improve care', 'display_name': 'Artificial intelligence (AI) in breast cancer care - Leveraging multidisciplinary skills to improve care', 'publication_year': 2020, 'publication_date': '2020-12-09', 'ids': {'openalex': 'https://openalex.org/W3110781278', 'doi': 'https://doi.org/10.1016/j.breast.2020.11.012', 'mag': '3110781278', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/33308879', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/7982546'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.breast.2020.11.012', 'pdf_url': 'http://www.thebreastonline.com/article/S0960977620302186/pdf', 'source': {'id': 'https://openalex.org/S181123643', 'display_name': 'The Breast', 'issn_l': '0960-9776', 'issn': ['0960-9776', '1532-3080'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'doaj'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'http://www.thebreastonline.com/article/S0960977620302186/pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5038678908', 'display_name': 'Maria João Cardoso', 'orcid': 'https://orcid.org/0000-0002-8137-3700'}, 'institutions': [{'id': 'https://openalex.org/I113358080', 'display_name': 'Champalimaud Foundation', 'ror': 'https://ror.org/03g001n57', 'country_code': 'PT', 'type': 'facility', 'lineage': ['https://openalex.org/I113358080']}, {'id': 'https://openalex.org/I83558840', 'display_name': 'Universidade Nova de Lisboa', 'ror': 'https://ror.org/02xankh89', 'country_code': 'PT', 'type': 'education', 'lineage': ['https://openalex.org/I83558840']}], 'countries': ['PT'], 'is_corresponding': True, 'raw_author_name': 'Maria Joao Cardoso', 'raw_affiliation_strings': ['Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal', 'Faculdade de Medicina da Universidade Nova de Lisboa, Nova Medical School, Lisbon, Portugal'], 'affiliations': [{'raw_affiliation_string': 'Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal', 'institution_ids': ['https://openalex.org/I113358080']}, {'raw_affiliation_string': 'Faculdade de Medicina da Universidade Nova de Lisboa, Nova Medical School, Lisbon, Portugal', 'institution_ids': ['https://openalex.org/I83558840']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5003268089', 'display_name': 'Nehmat Houssami', 'orcid': 'https://orcid.org/0000-0002-3641-952X'}, 'institutions': [{'id': 'https://openalex.org/I129604602', 'display_name': 'University of Sydney', 'ror': 'https://ror.org/0384j8v12', 'country_code': 'AU', 'type': 'education', 'lineage': ['https://openalex.org/I129604602']}], 'countries': ['AU'], 'is_corresponding': False, 'raw_author_name': 'Nehmat Houssami', 'raw_affiliation_strings': ['Sydney School of Public Health, Faculty of Medicine and Health, Fisher Road, The University of Sydney, New South Wales, Australia'], 'affiliations': [{'raw_affiliation_string': 'Sydney School of Public Health, Faculty of Medicine and Health, Fisher Road, The University of Sydney, New South Wales, Australia', 'institution_ids': ['https://openalex.org/I129604602']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5000798151', 'display_name': 'Giuseppe Pozzi', 'orcid': 'https://orcid.org/0000-0002-2828-862X'}, 'institutions': [{'id': 'https://openalex.org/I93860229', 'display_name': 'Politecnico di Milano', 'ror': 'https://ror.org/01nffqt88', 'country_code': 'IT', 'type': 'education', 'lineage': ['https://openalex.org/I93860229']}], 'countries': ['IT'], 'is_corresponding': False, 'raw_author_name': 'Giuseppe Pozzi', 'raw_affiliation_strings': ['DEIB, Politecnico di Milano, P.za L. da Vinci 32, I-20133, Milano, Italy'], 'affiliations': [{'raw_affiliation_string': 'DEIB, Politecnico di Milano, P.za L. da Vinci 32, I-20133, Milano, Italy', 'institution_ids': ['https://openalex.org/I93860229']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5043301871', 'display_name': 'Brigitte Séroussi', 'orcid': 'https://orcid.org/0000-0002-7676-2832'}, 'institutions': [{'id': 'https://openalex.org/I4210097159', 'display_name': 'Assistance Publique – Hôpitaux de Paris', 'ror': 'https://ror.org/00pg5jh14', 'country_code': 'FR', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210097159']}, {'id': 'https://openalex.org/I4389425324', 'display_name': "Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances en e-Santé", 'ror': 'https://ror.org/01jr1v359', 'country_code': None, 'type': 'facility', 'lineage': ['https://openalex.org/I154526488', 'https://openalex.org/I39804081', 'https://openalex.org/I4210091279', 'https://openalex.org/I4389425324']}, {'id': 'https://openalex.org/I4210091279', 'display_name': 'Université Sorbonne Paris Nord', 'ror': 'https://ror.org/0199hds37', 'country_code': 'FR', 'type': 'education', 'lineage': ['https://openalex.org/I4210091279']}, {'id': 'https://openalex.org/I154526488', 'display_name': 'Inserm', 'ror': 'https://ror.org/02vjkv261', 'country_code': 'FR', 'type': 'government', 'lineage': ['https://openalex.org/I154526488']}, {'id': 'https://openalex.org/I39804081', 'display_name': 'Sorbonne Université', 'ror': 'https://ror.org/02en5vm52', 'country_code': 'FR', 'type': 'education', 'lineage': ['https://openalex.org/I39804081']}], 'countries': ['FR'], 'is_corresponding': False, 'raw_author_name': 'Brigitte Séroussi', 'raw_affiliation_strings': ['Assistance Publique – Hôpitaux de Paris, Département de Santé Publique, F-75020, Paris, France', 'Sorbonne Université, Université Sorbonne Paris Nord, INSERM, LIMICS UMR_S 1142, F-75006, Paris, France'], 'affiliations': [{'raw_affiliation_string': 'Assistance Publique – Hôpitaux de Paris, Département de Santé Publique, F-75020, Paris, France', 'institution_ids': ['https://openalex.org/I4210097159']}, {'raw_affiliation_string': 'Sorbonne Université, Université Sorbonne Paris Nord, INSERM, LIMICS UMR_S 1142, F-75006, Paris, France', 'institution_ids': ['https://openalex.org/I4389425324', 'https://openalex.org/I4210091279', 'https://openalex.org/I154526488', 'https://openalex.org/I39804081']}]}], 'institution_assertions': [], 'countries_distinct_count': 4, 'institutions_distinct_count': 9, 'corresponding_author_ids': ['https://openalex.org/A5038678908'], 'corresponding_institution_ids': ['https://openalex.org/I113358080', 'https://openalex.org/I83558840'], 'apc_list': {'value': 2100, 'currency': 'USD', 'value_usd': 2100, 'provenance': 'doaj'}, 'apc_paid': {'value': 2100, 'currency': 'USD', 'value_usd': 2100, 'provenance': 'doaj'}, 'fwci': 0.385, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 6, 'citation_normalized_percentile': {'value': 0.627273, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 81, 'max': 82}, 'biblio': {'volume': '56', 'issue': None, 'first_page': '110', 'last_page': '113'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11636', 'display_name': 'Artificial Intelligence in Healthcare and Education', 'score': 0.9992, 'subfield': {'id': 'https://openalex.org/subfields/2718', 'display_name': 'Health Informatics'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11636', 'display_name': 'Artificial Intelligence in Healthcare and Education', 'score': 0.9992, 'subfield': {'id': 'https://openalex.org/subfields/2718', 'display_name': 'Health Informatics'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T12422', 'display_name': 'Radiomics and Machine Learning in Medical Imaging', 'score': 0.9982, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T10862', 'display_name': 'AI in cancer detection', 'score': 0.9978, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.96837497}, {'id': 'https://openalex.org/C22467394', 'wikidata': 'https://www.wikidata.org/wiki/Q849359', 'display_name': 'Multidisciplinary approach', 'level': 2, 'score': 0.85314965}, {'id': 'https://openalex.org/C530470458', 'wikidata': 'https://www.wikidata.org/wiki/Q128581', 'display_name': 'Breast cancer', 'level': 3, 'score': 0.57395035}, {'id': 'https://openalex.org/C19527891', 'wikidata': 'https://www.wikidata.org/wiki/Q1120908', 'display_name': 'Medical physics', 'level': 1, 'score': 0.4016328}, {'id': 'https://openalex.org/C143998085', 'wikidata': 'https://www.wikidata.org/wiki/Q162555', 'display_name': 'Oncology', 'level': 1, 'score': 0.39168292}, {'id': 'https://openalex.org/C121608353', 'wikidata': 'https://www.wikidata.org/wiki/Q12078', 'display_name': 'Cancer', 'level': 2, 'score': 0.37696356}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.3212298}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.2650067}, {'id': 'https://openalex.org/C36289849', 'wikidata': 'https://www.wikidata.org/wiki/Q34749', 'display_name': 'Social science', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C144024400', 'wikidata': 'https://www.wikidata.org/wiki/Q21201', 'display_name': 'Sociology', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.0}], 'mesh': [], 'locations_count': 6, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.breast.2020.11.012', 'pdf_url': 'http://www.thebreastonline.com/article/S0960977620302186/pdf', 'source': {'id': 'https://openalex.org/S181123643', 'display_name': 'The Breast', 'issn_l': '0960-9776', 'issn': ['0960-9776', '1532-3080'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://hal.sorbonne-universite.fr/hal-03350557', 'pdf_url': 'https://hal.sorbonne-universite.fr/hal-03350557/document', 'source': {'id': 'https://openalex.org/S4306402512', 'display_name': 'HAL (Le Centre pour la Communication Scientifique Directe)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1294671590', 'host_organization_name': 'Centre National de la Recherche Scientifique', 'host_organization_lineage': ['https://openalex.org/I1294671590'], 'host_organization_lineage_names': ['Centre National de la Recherche Scientifique'], 'type': 'repository'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://doaj.org/article/26407c01ed454362bd24f59daf127efd', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306401280', 'display_name': 'DOAJ (DOAJ: Directory of Open Access Journals)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://hal.sorbonne-universite.fr/hal-03350557/file/PIIS0960977620302186.pdf', 'pdf_url': 'https://hal.sorbonne-universite.fr/hal-03350557/file/PIIS0960977620302186.pdf', 'source': {'id': 'https://openalex.org/S4306402512', 'display_name': 'HAL (Le Centre pour la Communication Scientifique Directe)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1294671590', 'host_organization_name': 'Centre National de la Recherche Scientifique', 'host_organization_lineage': ['https://openalex.org/I1294671590'], 'host_organization_lineage_names': ['Centre National de la Recherche Scientifique'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://hdl.handle.net/10362/129936', 'pdf_url': 'https://run.unl.pt/bitstream/10362/129936/1/PIIS0960977620302186.pdf', 'source': {'id': 'https://openalex.org/S4377196375', 'display_name': 'RUN UNIVERSIDADE NOVA REPOSITORY (Universidade Nova de Lisboa)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I83558840', 'host_organization_name': 'Universidade Nova de Lisboa', 'host_organization_lineage': ['https://openalex.org/I83558840'], 'host_organization_lineage_names': ['Universidade Nova de Lisboa'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7982546', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.breast.2020.11.012', 'pdf_url': 'http://www.thebreastonline.com/article/S0960977620302186/pdf', 'source': {'id': 'https://openalex.org/S181123643', 'display_name': 'The Breast', 'issn_l': '0960-9776', 'issn': ['0960-9776', '1532-3080'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/9', 'display_name': 'Industry, innovation and infrastructure', 'score': 0.53}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 23, 'referenced_works': ['https://openalex.org/W2941525594', 'https://openalex.org/W2955799840', 'https://openalex.org/W2972992653', 'https://openalex.org/W2979495041', 'https://openalex.org/W2985260969', 'https://openalex.org/W2990907516', 'https://openalex.org/W2991021475', 'https://openalex.org/W2991592623', 'https://openalex.org/W2995106101', 'https://openalex.org/W2998382186', 'https://openalex.org/W2998388974', 'https://openalex.org/W2998525698', 'https://openalex.org/W2999587065', 'https://openalex.org/W2999911199', 'https://openalex.org/W3002051810', 'https://openalex.org/W3015550240', 'https://openalex.org/W3017184026', 'https://openalex.org/W3020203706', 'https://openalex.org/W3032638707', 'https://openalex.org/W3034145398', 'https://openalex.org/W3038792712', 'https://openalex.org/W3094237118', 'https://openalex.org/W3094657717'], 'related_works': ['https://openalex.org/W4286508873', 'https://openalex.org/W2892677547', 'https://openalex.org/W2481747425', 'https://openalex.org/W2185045523', 'https://openalex.org/W2175024588', 'https://openalex.org/W2110615888', 'https://openalex.org/W2007640890', 'https://openalex.org/W1982406023', 'https://openalex.org/W184430638', 'https://openalex.org/W156969523'], 'abstract_inverted_index': {'Artificial': [0, 1144, 1546, 2937, 3086, 3501], 'Intelligence': [1, 1547, 2938, 3069, 3087, 3502], '(AI)': [2, 2939], 'technologies': [3], 'supporting': [4], 'health': [5, 42, 133, 205, 234, 293, 309, 354, 470, 2296, 2506, 2558], "professionals'": [6], 'skills': [7, 301, 2826, 2831], 'bring': [8, 982, 2398], 'the': [9, 39, 64, 74, 120, 136, 171, 173, 176, 198, 210, 229, 251, 282, 312, 402, 406, 428, 465, 482, 489, 502, 518, 527, 535, 542, 580, 588, 598, 602, 612, 718, 723, 727, 746, 763, 770, 792, 796, 811, 825, 841, 893, 924, 979, 1019, 1043, 1108, 1123, 1183, 1189, 1210, 1269, 1274, 1290, 1304, 1311, 1371, 1399, 1410, 1454, 1470, 1475, 1481, 1500, 1516, 1543, 1584, 1591, 1597, 1630, 1674, 1698, 1738, 1754, 1782, 1792, 1818, 1827, 1868, 1871, 1905, 1917, 1966, 2038, 2056, 2060, 2076, 2095, 2103, 2114, 2121, 2154, 2163, 2203, 2319, 2366, 2378, 2411, 2420, 2569, 2588, 2593, 2633, 2685, 2694, 2720, 2730, 2771, 2776, 2798, 2811, 2834, 2843, 2934, 2941, 2949, 2952, 2968, 2996, 2999, 3005, 3015, 3034, 3050, 3054, 3060, 3065, 3075, 3081, 3092, 3101, 3111, 3115, 3122, 3125, 3159, 3169, 3179, 3182, 3186, 3195, 3204, 3217, 3239, 3284, 3297, 3301, 3307, 3312, 3323, 3338, 3354, 3370, 3379, 3386, 3390, 3395, 3401, 3409, 3414, 3430, 3461, 3467, 3478, 3490, 3495, 3508, 3510, 3515, 3525, 3535, 3543], 'promise': [10, 790], 'of': [11, 41, 55, 82, 104, 138, 157, 162, 197, 209, 315, 343, 370, 464, 467, 477, 481, 492, 501, 534, 539, 544, 564, 582, 590, 594, 633, 689, 707, 726, 749, 769, 794, 798, 813, 827, 844, 892, 898, 926, 956, 1021, 1053, 1089, 1111, 1188, 1215, 1251, 1281, 1292, 1306, 1368, 1401, 1431, 1456, 1472, 1477, 1497, 1545, 1576, 1587, 1594, 1600, 1609, 1633, 1636, 1660, 1676, 1679, 1700, 1711, 1732, 1740, 1756, 1759, 1766, 1812, 1821, 1870, 1907, 1919, 1922, 1969, 2040, 2059, 2078, 2081, 2099, 2105, 2116, 2130, 2135, 2179, 2230, 2243, 2304, 2316, 2321, 2368, 2414, 2573, 2618, 2657, 2696, 2732, 2775, 2786, 2845, 2876, 2926, 2936, 2943, 2954, 2995, 3014, 3053, 3110, 3124, 3181, 3185, 3197, 3216, 3296, 3300, 3369, 3385, 3394, 3429, 3469, 3494, 3524], 'an': [12, 695, 1813, 1896, 2206, 2722, 2854, 2914, 3482], 'era': [13], 'in': [14, 20, 30, 63, 154, 216, 233, 237, 258, 338, 352, 360, 373, 376, 420, 427, 434, 469, 474, 488, 526, 547, 574, 597, 742, 751, 755, 778, 803, 815, 958, 1000, 1008, 1122, 1146, 1167, 1212, 1222, 1232, 1362, 1488, 1572, 1629, 1663, 1826, 1930, 2094, 2123, 2271, 2410, 2538, 2598, 2608, 2620, 2632, 2662, 2679, 2734, 2742, 2754, 2759, 2839, 2867, 2918, 2940, 3049, 3070, 3088, 3108, 3121, 3189, 3203, 3303, 3353, 3360, 3397, 3412, 3465, 3477, 3492, 3503, 3522], 'which': [15, 735, 1751, 1924, 2582, 3208, 3546], 'repetitive': [16], 'and': [17, 25, 68, 125, 152, 175, 178, 204, 218, 242, 286, 289, 295, 318, 330, 375, 391, 405, 413, 422, 558, 636, 671, 693, 711, 783, 820, 836, 962, 991, 1006, 1045, 1051, 1101, 1151, 1197, 1206, 1242, 1258, 1462, 1574, 1602, 1615, 1626, 1657, 1666, 1693, 1705, 1747, 1776, 1889, 1928, 1957, 2005, 2017, 2097, 2129, 2188, 2219, 2227, 2240, 2257, 2268, 2291, 2298, 2302, 2318, 2331, 2342, 2453, 2466, 2482, 2501, 2560, 2591, 2612, 2626, 2637, 2654, 2688, 2692, 2704, 2738, 2744, 2773, 2810, 2823, 2860, 2909, 2986, 3011, 3074, 3094, 3097, 3103, 3184, 3191, 3199, 3241, 3251, 3280, 3326, 3341, 3357, 3388, 3403, 3474, 3487, 3500, 3517, 3527, 3531, 3534], 'time-intensive': [18], 'tasks': [19, 503], 'healthcare': [21, 123, 263, 414, 2416, 2895], 'can': [22, 45, 1176, 1938], 'be': [23, 341, 417, 517, 523, 1177, 1715, 1939, 2889, 2962, 3023, 3029, 3045, 3146], 'automated': [24, 2207], 'performed': [26, 3292], '(either': [27], 'entirely': [28], 'or': [29, 576, 2127, 2902], 'part)': [31], 'by': [32, 410, 509, 530, 614, 988, 1004, 1126, 1179, 1316, 1392, 1404, 1794, 1977, 2165, 2345, 2635, 2948, 3147, 3223, 3234, 3378], 'AI': [33, 56, 83, 139, 201, 232, 257, 272, 365, 411, 468, 814, 977, 999, 1166, 1204, 1223, 1230, 1478, 1520, 2244, 2287, 2347, 2399, 2607, 2619, 2706, 2733, 2748, 2793, 2830, 2838, 2859, 2871, 2887], 'systems.': [34, 532], 'As': [35, 1120, 3057], 'automation': [36], 'progressively': [37], 'facilitates': [38], 'delivery': [40, 60], 'care,': [43, 235, 372, 2611, 2787], 'physicians': [44, 1690, 1701, 1878], 'now': [46, 1926], 'focus': [47, 304, 378, 721], 'on': [48, 305, 327, 379, 587, 722, 1248, 1604, 1786, 2159, 2313, 2365, 2699, 2933, 2967, 3033, 3091, 3100, 3322, 3329, 3337, 3343, 3545], 'more': [49, 389, 392, 1278, 1704, 1706, 2328, 3009], 'humanized': [50], 'patient': [51], 'care.': [52, 160, 2574, 2762, 2921], 'The': [53, 102, 561, 1382, 1504, 2140, 2390, 2491, 2575, 2651, 2805, 2924, 2956, 3017, 3098, 3106, 3130, 3172, 3330, 3344, 3361, 3427, 3441], 'use': [54, 364, 543, 694, 812, 1476, 1544, 1765, 2288, 2320, 2367], 'to': [57, 95, 127, 184, 221, 223, 246, 249, 255, 268, 303, 333, 346, 357, 363, 366, 384, 522, 606, 720, 744, 758, 810, 830, 856, 900, 981, 984, 997, 1048, 1067, 1092, 1185, 1195, 1256, 1265, 1267, 1273, 1289, 1375, 1384, 1479, 1514, 1519, 1522, 1548, 1582, 1673, 1691, 1714, 1816, 1901, 1916, 1945, 1955, 1958, 1964, 1997, 2055, 2071, 2083, 2113, 2209, 2224, 2246, 2266, 2289, 2306, 2371, 2376, 2387, 2404, 2473, 2497, 2511, 2567, 2623, 2702, 2714, 2719, 2751, 2767, 2781, 2790, 2815, 2832, 2882, 2891, 2900, 2910, 2913, 2961, 3022, 3078, 3080, 3119, 3145, 3168, 3207, 3305, 3309, 3319, 3349, 3399], 'ensure': [58, 1049, 2791], 'quality': [59], 'is': [61, 70, 93, 212, 227, 497, 541, 1226, 1234, 1484, 1541, 1608, 1702, 1728, 2151, 2701, 2749, 2765, 2872, 3419], 'essential': [62], 'fight': [65], 'against': [66], 'diseases': [67], 'there': [69, 1200], 'no': [71], 'doubt': [72], 'that': [73, 144, 336, 484, 499, 504, 585, 1175, 1229, 1238, 1253, 1688, 2310, 2374, 2393, 2727, 3140, 3154], 'next': [75], 'decade': [76], 'will': [77, 147, 190, 485, 516, 1104, 1171, 1396, 2712, 2728, 2817, 2888], 'see': [78], 'a': [79, 117, 213, 399, 592, 687, 733, 788, 1245, 1249, 1307, 1405, 1511, 1655, 1658, 2468, 2475, 2504, 2562, 2850, 2884, 2928, 3008, 3293, 3470], 'growing': [80], 'stream': [81], 'applications': [84, 550, 846, 1521, 2245], 'across': [85, 2587], 'healthcare.': [86, 1935, 2877], '"We': [87], 'are': [88, 244, 277, 325, 472, 505, 586, 714, 807, 834, 1002, 1201, 1218, 1254, 1453, 1685, 1734, 1925, 2145, 2250, 2308, 2795, 3231, 3445], 'not': [89, 278, 1105, 1227, 1235, 1485, 2769, 2893], 'ready': [90], 'for': [91, 122, 129, 170, 320, 448, 791, 895, 1055, 1095, 1240, 1433, 1459, 1468, 1499, 1526, 1552, 1612, 1848, 1941, 1952, 2037, 2102, 2143, 2381, 2422, 2446, 2479, 2605, 2615, 2836, 2842, 2857, 3059, 3311], 'what': [92, 2700, 2782], 'about': [94, 1867], 'come"': [96], 'Coiera': [97], 'tells': [98], 'us': [99, 248, 487, 2881], '[[1]Coiera': [100], 'E.': [101, 625, 2262], 'price': [103], 'artificial': [105, 860, 921, 1016, 1071, 1770, 2264, 2451, 2659], 'intelligence.Yearbk': [106], 'Med': [107], 'Inform.': [108], '2019;': [109], '28:': [110], '14-25https://doi.org/10.1055/s-0039-1677892Crossref': [111], 'PubMed': [112, 458, 643, 677, 872, 911, 938, 972, 1033, 1083, 1161, 1351, 1444, 1563, 1649, 1858, 2012, 2197, 2281, 2359, 2460, 2546, 2674], 'Scopus': [113, 459, 644, 678, 873, 912, 939, 973, 1034, 1084, 1162, 1352, 1445, 1564, 1650, 1834, 1859, 2013, 2048, 2198, 2282, 2360, 2461, 2547, 2675], '(11)': [114, 1565, 2014], 'Google': [115, 461, 646, 680, 875, 914, 941, 975, 1036, 1086, 1164, 1354, 1447, 1566, 1652, 1836, 1861, 2015, 2050, 2200, 2284, 2362, 2463, 2549, 2677], 'Scholar],': [116, 1037, 1165, 2016, 2201, 2678], 'statement': [118], 'highlighting': [119], 'need': [121, 191, 267, 383, 1580, 1713, 2421], 'practitioners': [124], 'services': [126], 'prepare': [128], "AI's": [130], 'adoption': [131], 'into': [132, 772, 839, 2253, 2401], 'practice.': [134, 259], 'With': [135], 'progress': [137, 189, 359, 2228], 'systems,': [140], 'it': [141, 1492, 2132, 2816], 'seems': [142], 'obvious': [143, 498], 'machine': [145, 1090, 1664, 2002, 2322, 2369, 2494, 3254], 'thinking': [146, 447, 2697], 'invade': [148], 'our': [149, 181, 361, 377, 386, 595], 'workspace,': [150], 'literally': [151], 'figuratively,': [153], 'all': [155, 2716, 3047], 'areas': [156, 2242], 'breast': [158, 380, 493, 552, 691, 760, 771, 816, 857, 894, 927, 959, 1022, 1068, 1096, 1112, 1148, 1168, 1216, 1246, 1308, 1336, 1363, 1489, 1527, 1553, 1637, 1823, 1850, 1876, 1908, 1999, 2041, 2085, 2180, 2211, 2247, 2338, 2382, 2447, 2486, 2505, 2539, 2609, 2663, 2735, 2760, 2846, 2864, 2919, 2944], 'cancer': [159, 494, 663, 828, 858, 928, 960, 1023, 1069, 1169, 1217, 1337, 1490, 1528, 1638, 1733, 1824, 1851, 1909, 2000, 2042, 2086, 2106, 2181, 2212, 2248, 2339, 2383, 2408, 2448, 2487, 2540, 2610, 2664, 2736, 2761, 2847, 2865, 2920, 2945], 'Instead': [161], 'resisting,': [163], 'we': [164, 382, 1578, 2813], 'should': [165, 3157], 'better': [166, 316], 'consider': [167, 2853], 'preparing': [168], 'ourselves': [169], 'impact,': [172], 'potential,': [174], 'pitfalls,': [177], 'start': [179], 'adapting': [180], 'work': [182, 269, 429, 757, 1110, 1231, 1357, 1498, 2827], 'environment': [183], 'this': [185, 238, 397, 435, 475, 607, 756, 804, 1009, 1588, 2254, 2680, 3547], 'new': [186, 224, 1671, 1741, 1748, 2073, 2469, 2777], 'reality.': [187], 'This': [188, 226, 1283, 2683, 2710, 2878, 3316], 'big': [192, 2061, 3259], 'input': [193], 'from': [194, 430, 611, 665, 686, 1295, 1301, 1388, 1506, 1744, 1791, 2075, 2138, 2162, 2385, 2554, 2972, 3438, 3529], '"both': [195], 'sides': [196], 'barricade",': [199], 'namely': [200], 'technical': [202], 'experts': [203], 'care': [206, 471, 491, 1953, 2249, 2340, 2409, 2536, 2563, 2599, 2737, 2841, 3480], 'professionals.': [207], 'Fear': [208], 'unknown': [211], 'common': [214], 'obstacle': [215], 'innovation': [217], 'frequently': [219, 508], 'leads': [220], 'resistance': [222], 'approaches.': [225], 'also': [228, 808, 1115, 1359, 1579, 2251, 2757, 2789, 2898, 3044, 3152], 'situation': [230], 'with': [231, 271, 281, 512, 570, 704, 887, 1182, 1237, 1298, 1310, 1339, 1720, 1737, 1879, 1949, 2595, 2829, 2979, 3007, 3178, 3194], 'although': [236, 1491], 'instance,': [239], 'cautious': [240], 'planning': [241, 1458, 1575], 'evaluation': [243], 'needed': [245, 799, 1047, 2766], 'allow': [247, 2577], 'understand': [250, 1965], 'most': [252, 520, 536, 2570], 'beneficial': [253], 'way': [254, 2812], 'adopt': [256], 'To': [260, 394], 'achieve': [261], 'this,': [262], 'professionals': [264, 310, 415, 2297, 2896], 'including': [265, 551, 1098, 1769, 1886, 1934, 2863], 'doctors': [266, 276, 1903], 'closely': [270], 'experts.': [273], 'However,': [274, 1474], 'many': [275, 500, 1495, 3439], 'at': [279, 2489, 2951], 'ease': [280], 'computer': [283, 287, 322], 'science': [284, 323], 'language,': [285], 'scientists': [288, 412], 'engineers': [290], "don't": [291], 'master': [292], 'terminology': [294], 'concepts.': [296], 'Moreover,': [297], 'these': [298, 2326, 2426, 2792], 'very': [299, 507], 'divergent': [300], 'appear': [302], 'different': [306, 387, 752, 1730, 1767, 1880, 1942, 2513, 2974, 3035], 'objectives.': [307], 'While': [308], 'have': [311, 2713, 2960, 2990, 3003, 3021, 3144, 3211, 3269], 'primary': [313, 1822], 'goal': [314], 'diagnosis': [317, 577, 664, 961, 1270, 2386], 'treatment': [319, 1457, 1722], 'patients,': [321, 2082, 2899], 'teams': [324], 'focused': [326], 'inventing': [328], 'methods': [329], 'computational': [331], 'processes': [332, 1046, 2309, 2327, 2537, 2779], 'solve': [334, 396], 'questions': [335], 'might,': [337], 'some': [339, 480, 1187, 1463, 2231, 2555, 2993, 3227], 'instances,': [340], 'considered': [342, 1717, 3245], 'less': [344, 2235], 'priority': [345], 'those': [347], 'who': [348, 3463, 3505, 3512], 'actually': [349], 'manage': [350], 'patients': [351, 1529, 1825, 2384], 'real-word': [353], 'settings.': [355], 'So,': [356], 'make': [358, 1764, 2325], 'endeavor': [362], 'improve': [367, 1116, 1904], 'various': [368, 548], 'aspects': [369], 'clinical': [371, 549, 1585, 1745, 2402, 2825, 2840, 2907, 2916, 3102], 'general': [374], 'cancer,': [381, 1097], 'communicate': [385, 2307], 'perspectives': [388], 'efficiently': [390], 'effectively.': [393], 'help': [395, 486, 1689, 1902, 2375, 2597, 3180, 3540], 'problem,': [398], 'curriculum': [400], 'teaching': [401, 2303], 'language': [403, 1968, 2109, 2186, 2217, 3263], 'used': [404, 741, 1374, 1487, 2890], 'problems': [407], 'addressed': [408, 2631, 2991], 'both': [409, 419, 1099, 3031, 3224], 'could': [416, 1493, 2324, 2397, 2807], 'implemented': [418], 'pre-graduate': [421], 'post-graduate': [423], 'education,': [424], 'as': [425, 822, 824, 1314, 1961, 1963, 1973, 2784, 2874, 3249, 3272, 3373, 3421], 'highlighted': [426], 'Ferreira': [431], 'et': [432, 683, 730, 1040, 1128, 1318, 1394, 1508, 1864, 1893, 1979, 2019, 2065, 2089, 2168, 2429, 2517], 'al.': [433, 684, 731, 1041, 1129, 1319, 1395, 1509, 1865, 1894, 1980, 2020, 2066, 2090, 2169, 2430, 2518], 'special': [436, 608, 805, 2681, 2931, 2957, 3018, 3055, 3063, 3083, 3128, 3314, 3417, 3433, 3472], 'issue': [437, 609, 806, 1010, 2932, 2958, 3019, 3084, 3418, 3434, 3473], '[[2]Ferreira': [438], 'M.F.': [439], 'Savoy': [440], 'J.N.': [441], 'Markey': [442], 'M.K.': [443], 'Teaching': [444], 'cross-cultural': [445], 'design': [446, 2721], 'healthcare.Breast.': [449, 2272], '2020;': [450, 641, 675, 864, 903, 930, 964, 1025, 1075, 1153, 1343, 1436, 1555, 1641, 1832, 1856, 2010, 2046, 2195, 2273, 2351, 2458, 2544, 2666], '50:': [451, 1437, 2274, 2352], '1-10https://doi.org/10.1016/j.breast.2019.12.015Abstract': [452], 'Full': [453, 455, 867, 869, 906, 908, 933, 935, 967, 969, 1028, 1030, 1078, 1080, 1156, 1158, 1346, 1348, 1439, 1441, 1558, 1560, 1644, 1646, 2276, 2278, 2354, 2356, 2669, 2671], 'Text': [454, 456, 868, 870, 907, 909, 934, 936, 968, 970, 1029, 1031, 1079, 1081, 1157, 1159, 1347, 1349, 1440, 1442, 1559, 1561, 1645, 1647, 2277, 2279, 2355, 2357, 2670, 2672], 'PDF': [457, 871, 910, 937, 971, 1032, 1082, 1160, 1350, 1443, 1562, 1648, 2280, 2358, 2673], '(7)': [460, 1353], 'Scholar].': [462, 681, 976, 1087, 1355, 1448, 1567, 1862], 'Many': [463], 'subfields': [466], 'represented': [473], 'collection': [476], 'papers': [478, 613, 802, 1793, 3027, 3351], 'addressing': [479, 2705], 'developments': [483], 'routine': [490, 1109, 1372], 'patients.': [495, 1613, 2233, 2299, 2848], 'It': [496, 1225], 'undertaken': [506], 'human': [510, 1932, 2124, 2423], 'operators': [511], 'their': [513, 1117, 2689, 3520], 'inherent': [514], 'subjectivity': [515], 'ones': [519], 'likely': [521], 'replaced': [524], 'successfully': [525], 'near': [528, 599], 'future': [529, 793, 925, 1020, 1627, 2806, 2885], 'AI-based': [531], 'One': [533], 'relevant': [537, 724, 2596, 2614], 'fields': [538, 1471], 'research': [540, 1746, 2764, 2984, 2987, 3201, 3243, 3286], 'image': [545, 1366, 1570, 1607, 3252], 'analysis': [546, 1367, 1408, 1571, 1914, 1918, 2039, 2098, 2396, 3295, 3317], 'imaging,': [553, 817], 'digital': [554, 566, 1093, 1147, 1335], 'pathology,': [555], 'surgical': [556], 'planning,': [557], 'outcomes': [559, 1586, 1678], 'evaluation.': [560], 'huge': [562, 1920], 'amount': [563], 'imaging': [565, 891, 1196, 1241, 1271, 1299, 3250], 'data': [567, 1300, 1712, 1913, 1923, 1937, 1996, 2062, 2070, 2552, 3260], 'already': [568, 1202, 1466], 'annotated': [569], 'defined': [571], 'characteristics': [572], 'either': [573], 'screening': [575, 859, 985, 1001, 1056, 1070, 2481], 'has': [578, 978, 1262, 1285, 1358], 'allowed': [579], 'development': [581], 'machine-learning-derived': [583], 'solutions': [584, 2691], 'verge': [589], 'becoming': [591, 1703], 'part': [593, 2875], 'practices': [596], 'future.': [600], 'On': [601, 1781, 2153], 'methodological': [603, 1783, 2057, 2155, 3095], 'side,': [604, 1784, 2156, 3096, 3346], 'contributions': [605, 1785, 2054, 2966], 'come': [610, 1790, 2703], 'Ref.': [615, 1795], '[[3]Yap': [616], 'M.H.': [617], 'Goyal': [618], 'M.': [619, 661, 946, 1984, 2032], 'Osman': [620], 'F.': [621, 1331], 'Martí': [622], 'R.': [623, 629, 950, 1135], 'Denton': [624], 'Juette': [626], 'A.': [627, 1131, 2024, 2440, 2522], 'Zwiggelaar': [628], 'Breast': [630, 662, 3071, 3099, 3331, 3345, 3362, 3499], 'ultrasound': [631, 690], 'region': [632, 706], 'interest': [634, 708], 'detection': [635, 698, 710, 1430, 2096, 2488], 'lesion': [637, 712, 785], 'localisation.Artif': [638], 'Intell': [639, 673, 1830, 1854, 2008, 2044, 2193, 2456, 2542], 'Med.': [640, 674, 1831, 1855, 2009, 2045, 2194, 2457, 2543], '107https://doi.org/10.1016/j.artmed.2020.101880Crossref': [642], '(31)': [645], 'Scholar,[4]Carvalho': [647], 'E.D.': [648], 'Filho': [649], 'A.O.': [650], 'Silva': [651, 657, 1328, 1619], 'R.R.': [652], 'Araújo': [653, 1416], 'F.H.': [654], 'Diniz': [655], 'J.O.': [656], 'A.C.': [658], '…': [659, 1426, 1808, 2531], 'Gattass': [660], 'histopathological': [666, 767], 'images': [667, 692, 768, 1452], 'using': [668, 998, 1569, 2184, 2215, 2346, 2450, 2658, 2858], 'textural': [669], 'features': [670, 2074], 'CBIR.Artif': [672], '105https://doi.org/10.1016/j.artmed.2020.101845Crossref': [676], '(40)': [679], 'Yap': [682], 'move': [685], 'set': [688, 1755, 3541], 'accurate': [696, 1279], 'object': [697], 'deep': [699, 1668, 2220, 3294], 'learning': [700, 886, 1091, 1846, 2003, 2093, 2221, 2323, 2370, 2495], 'framework': [701, 2472], '(namely,': [702], 'Faster-RCNN': [703], 'Inception-ResNet-v2):': [705], '(ROI)': [709], 'localization': [713, 1280], 'automatically': [715, 1385, 2502], 'performed,': [716], 'helping': [717], 'surgeon': [719], 'area': [725], 'breast.': [728], 'Carvalho': [729, 1324], 'propose': [732, 1895, 2205, 2392, 2465], 'method': [734, 2208], 'deploys': [736], 'phylogenetic': [737], 'diversity': [738], 'indexes,': [739], 'generally': [740, 2753], 'biology': [743], 'compare': [745], 'behavior': [747], 'patterns': [748, 2373, 2572], 'species': [750], 'areas,': [753], 'applied': [754, 1208, 2223], 'characterize': [759], 'histopathology': [761], 'images:': [762], 'resulting': [764], 'model': [765, 1309], 'classifies': [766], 'four': [773, 2512, 3116, 3131, 3173, 3442], 'classes': [774, 2586], '-': [775, 923, 1018], 'invasive': [776], 'carcinoma,': [777, 780], 'situ': [779], 'normal': [781, 2125], 'tissue,': [782], 'benign': [784], '–': [786], 'leaving': [787], 'possible': [789, 1757, 2690], 'reducing': [795], 'number': [797, 1250, 1739], 'biopsies.': [800], 'Other': [801], 'dedicated': [809], 'screening,': [818], 'diagnosis,': [819], 'prognosis': [821], 'well': [823, 1962], 'prediction': [826, 897, 2445], 'response': [829, 899], 'treatment.': [831, 1473], 'These': [832], 'topics': [833], 'reviewed': [835], 'discussed': [837, 1003], 'taking': [838], 'account': [840], 'current': [842, 1624, 3198, 3240, 3431], 'state': [843, 3299], 'existing': [845], '[5Lee': [847], 'C.I.': [848, 1059], 'Houssami': [849, 953, 1060, 2649], 'N.': [850, 954, 1061, 2528, 2530, 2650], 'Elmore': [851, 1062], 'J.G.': [852, 1063], 'Buist': [853, 1064], 'D.S.': [854, 1065], 'Pathways': [855, 1066], 'intelligence': [861, 922, 1017, 1072, 1145, 2265, 2452, 2660], 'algorithm': [862, 1073, 2566], 'validation.Breast.': [863, 1074], '52:': [865, 1076], '146-149https://doi.org/10.1016/j.breast.2019.09.005Abstract': [866, 1077], '(8)': [874, 1085, 1651, 1835], 'Scholar,': [876, 915, 942], '6Gullo': [877], 'R.L.': [878], 'Eskreis-Winkler': [879], 'S.': [880, 1321, 1533, 1799, 2022, 2030, 2442, 2526], 'Morris': [881], 'E.A.': [882, 1143], 'Pinker': [883], 'K.': [884, 1840], 'Machine': [885], 'multiparametric': [888], 'magnetic': [889], 'resonance': [890], 'early': [896, 2484], 'neoadjuvant': [901], 'chemotherapy.Breast.': [902], '49:': [904, 931, 965, 1026, 1154, 1344, 1556, 1642, 2667], '115-122https://doi.org/10.1016/j.breast.2019.11.009Abstract': [905], '(26)': [913], '7Sechopoulos': [916], 'I.': [917, 1012, 1537], 'Mann': [918, 1007, 1013], 'R.M.': [919, 1014, 2028], 'Stand-alone': [920, 1015], 'screening?.Breast.': [929, 1024], '254-260https://doi.org/10.1016/j.breast.2019.12.014Abstract': [932, 1027], '(28)': [940, 1035], '8Tagliafico': [943], 'A.S.': [944], 'Piana': [945], 'Schenone': [947], 'D.': [948, 1425, 1838], 'Lai': [949], 'Massone': [951], 'A.M.': [952], 'Overview': [955], 'radiomics': [957], 'prognostication.Breast.': [963], '74-80https://doi.org/10.1016/j.breast.2019.10.018Abstract': [966], '(67)': [974], 'potential': [980, 1184], 'efficiencies': [983], 'programs': [986], 'burdened': [987], 'screen-reading': [989], 'workload,': [990], 'augmenting': [992], "radiologists'": [993], 'interpretation.': [994], 'Various': [995], 'approaches': [996, 2222], 'Sechopoulos': [1005], '[[7]Sechopoulos': [1011], 'while': [1038, 3226], 'Lee': [1039], 'highlight': [1042], 'pathways': [1044], 'validation': [1050], 'diversification': [1052], 'algorithms': [1054, 2496], 'practice': [1057, 2403], '[[5]Lee': [1058], 'Applications': [1088], 'pathology': [1094, 1170, 1198, 2225, 2585], 'diagnostic': [1100, 1118, 1573], 'prognostic': [1102], 'applications,': [1103], 'only': [1106, 2770, 2894, 2992, 3235], 'complement': [1107], 'pathologists': [1113], 'but': [1114, 2237, 2756, 2788, 2897, 3041], 'accuracy.': [1119], 'described': [1121, 1239], 'detailed': [1124], 'review': [1125, 1656], 'Ibrahim': [1127], '[[9]Ibrahim': [1130], 'Gamble': [1132], 'P.': [1133, 2260], 'Jaroensri': [1134], 'Abdelsamea': [1136], 'M.M.': [1137], 'Mermel': [1138], 'C.H.': [1139], 'Chen': [1140], 'P.-H.C.': [1141], 'Rakha': [1142], 'pathology:': [1149], 'techniques': [1150], 'applications.Breast.': [1152], '267-273https://doi.org/10.1016/j.breast.2019.12.007Abstract': [1155], '(45)': [1163], 'provide': [1172, 1946, 2592], 'information': [1173, 1272, 1293, 1774, 2150], 'beyond': [1174, 2797], 'gained': [1178], 'eyeball': [1180], 'assessment': [1181, 1632], 'replace': [1186, 1398], 'expensive': [1190], 'multigene': [1191], 'assays.': [1192], 'In': [1193, 1696], 'contrast': [1194], 'where': [1199, 2148, 2202, 2801, 2870, 2886, 3137], 'available': [1203], 'tools': [1205, 1465, 1581, 2794], 'substantial': [1207], 'research,': [1209], 'sub-specialties': [1211], 'local': [1213], 'treatments': [1214], 'relatively': [1219], 'lagging': [1220], 'behind': [1221], 'applications.': [1224], 'surprising': [1228], 'surgery': [1233, 1601, 1749], 'commensurate': [1236], 'pathology.': [1243], 'Operating': [1244], 'depends': [1247], 'variables': [1252], 'difficult': [1255], 'collect': [1257], 'standardize.': [1259], 'An': [1260], 'effort': [1261, 1284, 3437], 'been': [1263, 1286, 1360, 3212, 3270], 'made': [1264], 'try': [1266], 'transfer': [1268], 'operating': [1275], 'room,': [1276], 'allowing': [1277, 1303], 'cancer.': [1282], 'essentially': [1287, 2312], 'directed': [1288], 'fusion': [1291, 1341], 'coming': [1294, 2971], 'surface': [1296], 'scans': [1297], 'MRI': [1302], 'construction': [1305, 3428], 'tumor': [1312], 'inside,': [1313], 'reported': [1315], 'Bessa': [1317], '[[10]Bessa': [1320], 'Gouveia': [1322], 'P.F.': [1323], 'P.H.': [1325], 'Rodrigues': [1326], 'C.': [1327, 1415, 1803, 1805], 'N.L.': [1329], 'Cardoso': [1330, 1332, 1427, 1614, 1621, 3486], 'M.J.': [1333, 1428, 1622], '3D': [1334], 'models': [1338, 2004], 'multimodal': [1340], 'algorithms.Breast.': [1342], '281-290https://doi.org/10.1016/j.breast.2019.12.016Abstract': [1345], 'Some': [1356, 2234, 3215], 'done': [1361], 'reconstruction': [1364, 1379], 'through': [1365], 'angio': [1369, 1389], 'CTs,': [1370, 1390], 'exam': [1373], 'plan': [1376, 2726], 'free': [1377, 2118], 'flap': [1378], 'after': [1380], 'mastectomy.': [1381], 'capacity': [1383, 2115], 'detect': [1386, 2372], 'vessels': [1387], 'proposed': [1391, 3067], 'Mavioso': [1393], 'hopefully': [1397], 'process': [1400, 1483, 3162, 3410], 'manual': [1402], 'annotation': [1403], 'computerized': [1406], 'automatic': [1407], 'keeping': [1409], 'same': [1411, 2969], 'accuracy': [1412, 1906, 2772], 'levels': [1413], '[[11]Mavioso': [1414], 'R.J.': [1417], 'Oliveira': [1418], 'H.P.': [1419], 'Anacleto': [1420], 'J.C.': [1421, 1992], 'Vasconcelos': [1422], 'M.A.': [1423], 'Pinto': [1424], 'Automatic': [1429], 'perforators': [1432], 'microsurgical': [1434], 'reconstruction.Breast.': [1435], '19-24https://doi.org/10.1016/j.breast.2020.01.001Abstract': [1438], '(4)': [1446, 2049], 'Concerning': [1449], 'radiotherapy,': [1450], 'CT': [1451], 'core': [1455], 'each': [1460, 2977], 'patient,': [1461], 'facilitating': [1464], 'exist': [1467], 'contouring': [1469], 'automate': [1480], 'entire': [1482], 'yet': [1486, 2418], 'save': [1494], 'hours': [1496], 'radiation': [1501, 1524, 1550], 'oncology': [1502], 'team.': [1503], 'paper': [1505, 2164, 2634], 'Poortmans': [1507], 'offers': [1510], 'significant': [1512, 2053], 'contribution': [1513, 2158], 'elucidate': [1515], 'issues': [1517, 2628, 3221], 'related': [1518], 'individualize': [1523], 'therapy': [1525, 1551], '[[12]Poortmans': [1530], 'P.M.': [1531], 'Takanen': [1532], 'Marta': [1534], 'G.N.': [1535], 'Meattini': [1536], 'Kaidar-Person': [1538], 'O.': [1539], 'Winter': [1540], 'over:': [1542], 'individualise': [1549], 'cancer.Breast.': [1554], '194-200https://doi.org/10.1016/j.breast.2019.11.011Abstract': [1557], 'Beyond': [1568], 'treatment,': [1577], 'assess': [1583, 2290], 'decision.': [1589, 1723], 'Besides': [1590], 'side': [1592, 2058, 3325, 3340], 'effects': [1593], 'systemic': [1595], 'treatments,': [1596], 'visible': [1598], 'impact': [1599], 'radiotherapy': [1603], "patients'": [1605], 'body': [1606], 'major': [1610, 3200, 3242, 3285], 'importance': [1611, 2695], 'colleagues': [1616, 2638], '[[13]Cardoso': [1617], 'J.S.': [1618], 'W.': [1620, 2642], 'Evolution,': [1623], 'challenges,': [1625], 'possibilities': [1628], 'objective': [1631], 'aesthetic': [1634, 1677], 'outcome': [1635], 'locoregional': [1639, 1680], 'treatment.Breast.': [1640], '123-130https://doi.org/10.1016/j.breast.2019.11.006Abstract': [1643], 'Scholar]': [1653, 2051, 2285, 2363, 2464, 2550], 'offer': [1654, 2052], 'discussion': [1659], 'recent': [1661], 'advancements': [1662], 'learning,': [1665, 1669], 'especially': [1667], 'bringing': [1670], 'promises': [1672], 'field': [1675], 'treatments.': [1681], 'Decision': [1682, 1761], 'support': [1683, 1762, 1788, 1817, 1884, 1899, 1951, 2729, 3257], 'systems': [1684, 1687, 1763, 1789, 2661], 'advanced': [1686], 'diagnose': [1692], 'treat': [1694], 'diseases.': [1695], 'fact,': [1697], 'task': [1699], 'complex': [1707, 2412], 'because': [1708, 1725], 'increasing': [1709], 'quantities': [1710, 1921], 'properly': [1716], 'before': [1718, 2708], 'proceeding': [1719], 'any': [1721, 1931, 2616], 'Indeed,': [1724, 2976], 'medical': [1726, 1947, 1974, 2146, 3104], 'knowledge': [1727, 1772, 2137], 'advancing,': [1729], 'categories': [1731], 'proliferating': [1735], 'along': [1736, 2425], 'therapies': [1742], 'stemming': [1743], 'techniques,': [1750], 'dramatically': [1752], 'widen': [1753], 'choices': [1758], 'decisions.': [1760], 'methodologies': [1768], 'intelligence,': [1771], 'representation,': [1773], 'visualization,': [1775], 'text': [1777, 2122], 'mining,': [1778], 'among': [1779], 'others.': [1780], 'decision': [1787, 1883, 1898, 3256], '[[14]Bouaud': [1796], 'J.': [1797, 1990], 'Pelayo': [1798], 'Lamy': [1800], 'J.-B.': [1801], 'Prebet': [1802], 'Ngo': [1804], 'Teixeira': [1806], 'L.': [1807, 1982, 2026, 2438, 2520, 2533], 'Seroussi': [1809], 'B.': [1810, 2648], 'Implementation': [1811], 'ontological': [1814], 'reasoning': [1815], 'guideline-based': [1819], 'management': [1820, 2344, 2942], 'DESIREE': [1828, 1873], 'project.Artif': [1829], '101922https://doi.org/10.1016/j.artmed.2020.101922Crossref': [1833], 'Scholar,[15]Gu': [1837], 'Su': [1839], 'Zhao': [1841], 'H.': [1842, 2171, 2646], 'A': [1843, 2601], 'case-based': [1844, 1890], 'ensemble': [1845], 'system': [1847, 1900, 3393], 'explainable': [1849], 'recurrence': [1852, 1910, 2183], 'prediction.Artif': [1853], '107https://doi.org/10.1016/j.artmed.2020.101858Crossref': [1857], '(22)': [1860], 'Bouaud': [1863], 'report': [1866, 2364], 'results': [1869, 2576], 'European-funded': [1872], 'project,': [1874], 'providing': [1875], 'unit': [1877], 'complementary': [1881], 'therapeutic': [1882], 'modules': [1885], 'guideline-based,': [1887], 'experience-based,': [1888], 'reasoning.': [1891], 'Gu': [1892], 'auxiliary': [1897], 'prediction.': [1911], 'Big': [1912], 'refers': [1915, 2112], 'collected': [1927, 3046], 'stored': [1929], 'activity,': [1933], 'Such': [1936, 2849], 'exploited': [1940], 'targets,': [1943], 'e.g.,': [1944], 'staff': [1948], 'suggestion': [1950], 'delivery,': [1954], 'reason,': [1956], 'extract': [1959], 'knowledge,': [1960], 'natural': [1967, 2185, 2216, 3262], 'textual': [1970], 'descriptions': [1971], 'such': [1972, 3248, 3481], 'reports.': [1975], 'Papers': [1976], 'Macias-Garcia': [1978, 2064], '[[16]Macı́as-Garcı́a': [1981], 'Martı́nez-Ballesteros': [1983], 'Luna-Romera': [1985], 'J.M.': [1986, 1988], 'Garcı́a-Heredia': [1987], 'Garcı́a-Gutiérrez': [1989], 'Riquelme-Santos': [1991], 'Autoencoded': [1993], 'DNA': [1994, 2068], 'methylation': [1995, 2069], 'predict': [1998, 2084, 2210], 'recurrence:': [2001], 'gene-weight': [2006], 'significance.Artif': [2007], '110https://doi.org/10.1016/j.artmed.2020.101976Crossref': [2011], 'Pozzoli': [2018, 2088], '[[17]Pozzoli': [2021], 'Soliman': [2023], 'Bahri': [2025], 'Branca': [2027], 'Girdzijauskas': [2029], 'Brambilla': [2031], 'Domain': [2033], 'expertise–agnostic': [2034], 'feature': [2035], 'selection': [2036], 'data.Artif': [2043], '101928https://doi.org/10.1016/j.artmed.2020.101928Crossref': [2047], 'topic.': [2063, 3016], 'summarize': [2067], 'generate': [2072], 'values': [2077], 'CpG': [2079], 'sites': [2080], 'recurrence.': [2087], 'experiment': [2091], 'unsupervised': [2092], 'distinctive': [2100], 'proteins': [2101], 'identification': [2104, 3196], 'subtypes.': [2107], 'Natural': [2108], 'processing': [2110, 2187, 2218, 3264], '(NLP)': [2111], 'analyzing': [2117], 'text,': [2119], 'i.e.,': [2120], 'speaking': [2126], 'writing,': [2128], 'understanding': [2131], 'and,': [2133], 'possibly,': [2134], 'extracting': [2136], 'it.': [2139], 'main': [2141], 'sources': [2142], 'NLP': [2144, 2160], 'reports,': [2147], 'non-coded': [2149], 'depicted.': [2152], 'one': [2157, 3236, 3368], 'comes': [2161], 'Hanyin': [2166], 'Wang': [2167], '[[18]Wang': [2170], 'Li': [2172], 'Y.': [2173, 2177], 'Khan': [2174], 'S.A.': [2175], 'Luo': [2176], 'Prediction': [2178], 'distant': [2182, 2213], 'knowledge-guided': [2189], 'convolutional': [2190], 'neural': [2191], 'network.Artif': [2192], '110https://doi.org/10.1016/j.artmed.2020.101977Crossref': [2196], '(14)': [2199, 2283], 'authors': [2204, 2391, 3308], 'recurrence,': [2214], 'reports': [2226], 'notes': [2229], '6000': [2232], 'established': [2236], 'however': [2238], 'emerging': [2239], 'promising': [2241], 'introduced': [2252], 'issue.': [2255, 2682, 3056, 3129, 3315], 'Butow': [2256], 'Hoque': [2258, 2261], '[[19]Butow': [2259], 'Using': [2263], 'analyse': [2267], 'teach': [2269], 'communication': [2270, 2294, 2301], '49-55https://doi.org/10.1016/j.breast.2020.01.008Abstract': [2275], 'discuss': [2286], 'define': [2292, 2568, 2818], 'effective': [2293, 2723], 'between': [2295], 'Both': [2300], 'how': [2305, 2819, 2824], 'stand': [2311], 'qualitative': [2314], 'forms': [2315], 'analysis/evaluation,': [2317], 'efficient.': [2329], 'Moser': [2330], 'Nayaran': [2332], '[[20]Moser': [2333], 'E.C.': [2334], 'Narayan': [2335], 'G.': [2336, 2436], 'Improving': [2337], 'coordination': [2341], 'symptom': [2343], 'driven': [2348], 'predictive': [2349], 'toolkits.Breast.': [2350], '25-29https://doi.org/10.1016/j.breast.2019.12.006Abstract': [2353], '(10)': [2361], 'track': [2377], 'ideal': [2379], 'workflow': [2380], 'long-term': [2388], 'follow-up.': [2389], 'electronic': [2394, 2557, 2579], 'records': [2395, 2559], 'modeling': [2400], 'drive': [2405], 'well-coordinated,': [2406], 'patient-centered': [2407], 'web': [2413], 'modern': [2415], 'today,': [2417], 'stressing': [2419], 'presence': [2424], 'pathways.': [2427, 2747], 'Kakileti': [2428], '[[21]Kakileti': [2431], 'S.T.': [2432], 'Madhu': [2433], 'H.J.': [2434], 'Manjunath': [2435], 'Wee': [2437], 'Dekker': [2439], 'Sampangi': [2441], 'Personalized': [2443], 'risk': [2444, 2471, 2507, 2514, 2724], 'pre-screening': [2449], 'thermal': [2454, 2499], 'radiomics.Artif': [2455], '105https://doi.org/10.1016/j.artmed.2020.101854Crossref': [2459], '(15)': [2462], 'analyze': [2467, 2498, 2551], 'personalized': [2470, 3274], 'identify': [2474, 3306], 'high-risk': [2476], 'target': [2477, 2982], 'population': [2478], 'regular': [2480], 'enable': [2483, 2880], 'stage': [2485], 'scale.': [2490], 'approach': [2492, 2711, 3001], 'runs': [2493], 'images,': [2500], 'generates': [2503], 'score,': [2508], 'assigning': [2509], 'subjects': [2510], 'classes.': [2515], 'Chiudinelli': [2516], '[[22]Chiudinelli': [2519], 'Dagliati': [2521], 'Tibollo': [2523], 'V.': [2524], 'Albasini': [2525], 'Geifman': [2527], 'Peek': [2529], 'Sacchi': [2532], 'Mining': [2534], 'post-surgical': [2535], 'patients.Artif': [2541], '105https://doi.org/10.1016/j.artmed.2020.101855Crossref': [2545], '(9)': [2548], 'extracted': [2553], '3000': [2556], 'describe': [2561, 2583], 'flow': [2564], 'mining': [2565], 'frequent': [2571], 'drawing': [2578], 'temporal': [2580], 'phenotypes': [2581], 'well-characterized': [2584], 'studied': [2589], 'population,': [2590], 'surgeons': [2594], 'delivery.': [2600], 'further': [2602], 'crucial': [2603], 'topic': [2604, 2970], 'applying': [2606], 'indeed': [2613], 'application': [2617], 'healthcare,': [2621, 2755], 'relates': [2622], 'ethical,': [2624, 2652, 3278], 'legal,': [2625, 3279], 'social': [2627, 2655, 3281], '(ELSI),': [2629], 'wonderfully': [2630], 'Carter': [2636], '[[23]Carter': [2639], 'S.M.': [2640], 'Rogers': [2641], 'Win': [2643], 'K.T.': [2644], 'Frazer': [2645], 'Richards': [2647], 'legal': [2653], 'implications': [2656], 'care.Breast.': [2665], '25-32https://doi.org/10.1016/j.breast.2019.10.001Abstract': [2668], '(46)': [2676], 'highlights': [2684], 'ELSI': [2686], 'challenges': [2687], 'reinforces': [2693], 'carefully': [2698, 3518], 'risks': [2707], 'implementation.': [2709], 'include': [2715, 3246], 'stakeholders': [2717], 'involved': [2718], 'mitigation': [2725], 'introduction': [2731], 'inform': [2739, 2901], 'its': [2740, 2980], 'expansion': [2741], 'ethical': [2743, 2855], 'socially': [2745], 'acceptable': [2746, 2873], 'here': [2750], 'stay,': [2752], 'specifically': [2758], 'Structured': [2763], 'investigate': [2768], 'utility': [2774], 'AI-related': [2778], 'compared': [2780], 'exists': [2783], 'standard': [2785], 'transferable': [2796], 'specific': [2799, 2981], 'settings': [2800], 'they': [2802, 3037, 3042, 3138, 3192], 'were': [2803, 3038, 3085, 3288, 3335, 3376], 'developed.': [2804], 'change': [2808], 'rapidly': [2809], 'adapt': [2814], 'effectively': [2820], 'multidisciplinarity': [2821], 'operates': [2822], 'jointly': [2828], 'develop': [2833], 'pathway': [2835, 2851, 2917], 'implementing': [2837], 'benefit': [2844], 'must': [2852], 'construct': [2856], 'engage': [2861], 'stakeholders,': [2862], 'consumers,': [2866], 'decisions': [2868], 'regarding': [2869, 3408], 'may': [2879], 'build': [2883], 'augment': [2892], 'complement,': [2903], 'rather': [2904], 'than': [2905], 'dictate': [2906], 'decisions,': [2908], 'ultimately': [2911], 'transition': [2912], 'AI-supported': [2915], 'Methodological': [2922], 'issues:': [2923], 'idea': [2925, 3468, 3483], 'having': [2927], 'virtual': [2929, 3062, 3082, 3126, 3415, 3432], 'joint': [2930, 3000, 3061, 3127, 3313, 3416, 3471], 'advent': [2935], 'was': [2946, 3549], 'launched': [2947, 3464], 'publisher': [2950, 3066, 3183], 'end': [2953], '2018.': [2955], 'would': [2959, 2989, 3002, 3020, 3028, 3043, 3143, 3210], 'joint,': [2963], 'i.e.': [2964, 3025], 'collecting': [2965], 'two': [2973, 3112, 3187, 3496], 'journals.': [2975, 3171], 'journal,': [2978], 'scientists,': [2983], 'field,': [2985, 3205], 'methods,': [2988], 'facets': [2994], 'topic,': [2997], 'whereas': [2998], 'provided': [3004], 'reader': [3006], 'comprehensive': [3010], 'holistic': [3012], 'view': [3013], 'virtual,': [3024], 'accepted': [3026, 3507, 3514], 'published': [3030, 3352, 3359], 'separately': [3032], 'journals': [3036, 3076, 3113, 3497], 'submitted': [3039, 3155, 3167, 3336, 3365], 'to,': [3040], 'together': [3048], 'final': [3051], 'volume': [3052], 'title': [3058], 'issue,': [3064], '"Artificial': [3068], 'Cancer': [3072], 'Care",': [3073], 'invited': [3077, 3114], 'contribute': [3079], 'Medicine': [3089], '(AIM)': [3090], 'computer-science': [3093], 'side.': [3105, 3332], 'editors': [3107, 3118, 3133, 3151, 3175, 3188, 3291, 3372, 3444, 3491], 'chief': [3109, 3493], 'guest': [3117, 3132, 3174, 3290, 3371, 3381, 3443, 3532], 'serve': [3120], 'making': [3123], 'had': [3134], 'several': [3135], 'meetings,': [3136], 'decided': [3139, 3153], 'manuscript': [3141, 3164], 'submission': [3142], 'invitation,': [3148], 'only.': [3149], 'Guest': [3150], 'manuscripts': [3156, 3334, 3366, 3521], 'undergo': [3158], 'usual': [3160], 'reviewing': [3161], 'every': [3163], 'undergoes': [3165], 'when': [3166], 'respective': [3170], 'worked': [3176], 'jointly,': [3177], 'chief,': [3190], 'started': [3193], 'trends': [3202, 3219, 3230, 3244, 3268, 3287], 'according': [3206], 'invitations': [3209, 3321, 3328], 'sent': [3213], 'out.': [3214], 'identified': [3218, 3229, 3271], 'cover': [3220], 'shared': [3222], 'journals,': [3225], 'other': [3228, 3380], 'mainly': [3232], 'covered': [3233], 'journal.': [3237, 3363], 'Accordingly,': [3238], 'subtopics': [3247], 'analysis;': [3253], 'learning;': [3255], 'systems;': [3258], 'analytics;': [3261], '(NLP).': [3265], 'Moreover': [3266], 'additional': [3267], 'emerging:': [3273], 'medicine;': [3275], 'business': [3276], 'intelligence;': [3277], 'issues.': [3282], 'Once': [3283], 'identified,': [3289], 'corresponding': [3298], 'art': [3302], 'order': [3304, 3398], 'invite': [3310], 'led': [3318], '31': [3320], 'AIM': [3324, 3339, 3355], '15': [3327], 'Sixteen': [3333], '13': [3342, 3358], 'leading': [3347], 'finally': [3348], '9': [3350], 'journal': [3356, 3396], 'When': [3364], 'included': [3367, 3420], 'co-author,': [3374], 'submissions': [3375], 'managed': [3377], 'editor': [3382], '(not': [3383], 'author': [3384], 'submission),': [3387], 'outside': [3389], 'official': [3391], 'submission-management': [3392], 'guarantee': [3400], 'blind': [3402], 'peer-review': [3404], 'process.': [3405], 'Additional': [3406], 'details': [3407], 'followed': [3411], 'compiling': [3413], 'online-only': [3422], 'supplementary': [3423], 'material': [3424], '(link': [3425], 'xxxxx).': [3426], 'required': [3435], 'much': [3436], 'people.': [3440], 'grateful': [3446], 'to:': [3447], 'Alison': [3448], 'Waldron,': [3449], 'Amar': [3450], 'Bhogals,': [3451], 'Ashley': [3452], 'Kieran': [3453], 'Clift,': [3454], 'David': [3455], 'Spencer,': [3456], 'Justyna': [3457], 'Kasprzycka,': [3458], 'Kavitha': [3459], 'Narayanasamy,': [3460], 'publishers': [3462], '2018': [3466], 'constantly': [3475], 'helped': [3476], 'everyday': [3479], 'required;': [3484], 'Fatima': [3485], 'Carlo': [3488], 'Combi,': [3489], '(The': [3498], 'Medicine)': [3504], 'eagerly': [3506], 'idea;': [3509], 'authors,': [3511], 'enthusiastically': [3513], 'invitations,': [3516], 'revised': [3519], 'guidance': [3523], 'suggestions': [3526], 'recommendations': [3528], 'reviewers': [3530], 'editors;': [3533], 'anonymous': [3536], 'reviewers,': [3537], 'whose': [3538], 'valuable': [3539], 'up': [3542], 'pillars': [3544], 'project': [3548], 'built.': [3550]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3110781278', 'counts_by_year': [{'year': 2023, 'cited_by_count': 4}, {'year': 2022, 'cited_by_count': 2}], 'updated_date': '2024-12-10T17:09:18.157870', 'created_date': '2020-12-21'}