Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3090837333', 'doi': 'https://doi.org/10.1190/segam2020-3425046.1', 'title': 'Application of a convolutional neural network to classification of swell noise attenuation', 'display_name': 'Application of a convolutional neural network to classification of swell noise attenuation', 'publication_year': 2020, 'publication_date': '2020-09-30', 'ids': {'openalex': 'https://openalex.org/W3090837333', 'doi': 'https://doi.org/10.1190/segam2020-3425046.1', 'mag': '3090837333'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1190/segam2020-3425046.1', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5086587642', 'display_name': 'B. Farmani', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I110537696', 'display_name': 'Petroleum Geo-Services (United Kingdom)', 'ror': 'https://ror.org/04s3xvj56', 'country_code': 'GB', 'type': 'company', 'lineage': ['https://openalex.org/I110537696', 'https://openalex.org/I4210108136']}], 'countries': ['GB'], 'is_corresponding': False, 'raw_author_name': 'Bagher Farmani', 'raw_affiliation_strings': ['PGS'], 'affiliations': [{'raw_affiliation_string': 'PGS', 'institution_ids': ['https://openalex.org/I110537696']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5054940633', 'display_name': 'Morten W. Pedersen', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I110537696', 'display_name': 'Petroleum Geo-Services (United Kingdom)', 'ror': 'https://ror.org/04s3xvj56', 'country_code': 'GB', 'type': 'company', 'lineage': ['https://openalex.org/I110537696', 'https://openalex.org/I4210108136']}], 'countries': ['GB'], 'is_corresponding': False, 'raw_author_name': 'Morten W. Pedersen', 'raw_affiliation_strings': ['PGS'], 'affiliations': [{'raw_affiliation_string': 'PGS', 'institution_ids': ['https://openalex.org/I110537696']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.384, 'has_fulltext': False, 'cited_by_count': 4, 'citation_normalized_percentile': {'value': 0.635242, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 77, 'max': 79}, 'biblio': {'volume': None, 'issue': None, 'first_page': '2868', 'last_page': '2872'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10688', 'display_name': 'Image and Signal Denoising Methods', 'score': 0.9893, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10688', 'display_name': 'Image and Signal Denoising Methods', 'score': 0.9893, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12537', 'display_name': 'Flow Measurement and Analysis', 'score': 0.9775, 'subfield': {'id': 'https://openalex.org/subfields/2211', 'display_name': 'Mechanics of Materials'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10534', 'display_name': 'Structural Health Monitoring Techniques', 'score': 0.9766, 'subfield': {'id': 'https://openalex.org/subfields/2205', 'display_name': 'Civil and Structural Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/swell', 'display_name': 'Swell', 'score': 0.5532387}], 'concepts': [{'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.77575386}, {'id': 'https://openalex.org/C184652730', 'wikidata': 'https://www.wikidata.org/wiki/Q2357982', 'display_name': 'Attenuation', 'level': 2, 'score': 0.70417345}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.69192666}, {'id': 'https://openalex.org/C99498987', 'wikidata': 'https://www.wikidata.org/wiki/Q2210247', 'display_name': 'Noise (video)', 'level': 3, 'score': 0.56444293}, {'id': 'https://openalex.org/C108628306', 'wikidata': 'https://www.wikidata.org/wiki/Q185411', 'display_name': 'Swell', 'level': 2, 'score': 0.5532387}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.5372702}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.49186158}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.38835296}, {'id': 'https://openalex.org/C28490314', 'wikidata': 'https://www.wikidata.org/wiki/Q189436', 'display_name': 'Speech recognition', 'level': 1, 'score': 0.3412928}, {'id': 'https://openalex.org/C127313418', 'wikidata': 'https://www.wikidata.org/wiki/Q1069', 'display_name': 'Geology', 'level': 0, 'score': 0.15732417}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.08928168}, {'id': 'https://openalex.org/C120665830', 'wikidata': 'https://www.wikidata.org/wiki/Q14620', 'display_name': 'Optics', 'level': 1, 'score': 0.06422734}, {'id': 'https://openalex.org/C111368507', 'wikidata': 'https://www.wikidata.org/wiki/Q43518', 'display_name': 'Oceanography', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1190/segam2020-3425046.1', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 9, 'referenced_works': ['https://openalex.org/W2142828353', 'https://openalex.org/W2329292610', 'https://openalex.org/W2889688614', 'https://openalex.org/W2890172403', 'https://openalex.org/W2952232639', 'https://openalex.org/W2955464929', 'https://openalex.org/W2991857635', 'https://openalex.org/W3022551927', 'https://openalex.org/W3124319352'], 'related_works': ['https://openalex.org/W623798671', 'https://openalex.org/W4213123642', 'https://openalex.org/W4213111184', 'https://openalex.org/W4206156775', 'https://openalex.org/W4205978105', 'https://openalex.org/W4205109902', 'https://openalex.org/W3193132053', 'https://openalex.org/W2248767458', 'https://openalex.org/W215111066', 'https://openalex.org/W121802961'], 'abstract_inverted_index': {'PreviousNext': [0], 'No': [1], 'AccessSEG': [2], 'Technical': [3, 229, 285], 'Program': [4, 230, 286], 'Expanded': [5, 231, 287], 'Abstracts': [6, 232, 288], '2020Application': [7], 'of': [8, 15, 43, 127, 151, 212, 252, 255, 273, 280], 'a': [9, 44, 68, 82, 274], 'convolutional': [10, 275], 'neural': [11, 183, 276], 'network': [12, 277], 'to': [13, 30, 52, 87, 116, 124, 142, 278], 'classification': [14, 72, 108, 156, 279], 'swell': [16, 192, 281], 'noise': [17, 37, 84, 91, 113, 193, 282], 'attenuationAuthors:': [18], 'Bagher': [19, 219, 265], 'FarmaniMorten': [20], 'W.': [21, 26, 269], 'PedersenBagher': [22], 'FarmaniPGS': [23], 'and': [24, 48, 114, 204, 209, 223, 267], 'Morten': [25, 221, 268], 'PedersenPGShttps://doi.org/10.1190/segam2020-3425046.1': [27], 'SectionsAboutPDF/ePub': [28], 'ToolsAdd': [29], 'favoritesDownload': [31], 'CitationsTrack': [32], 'CitationsPermissions': [33], 'ShareFacebookTwitterLinked': [34], 'InRedditEmail': [35], 'AbstractSwell': [36], 'attenuation': [38, 92], 'is': [39, 49], 'an': [40, 119], 'important': [41], 'part': [42], 'seismic': [45, 191, 216], 'processing': [46], 'flow': [47], 'often': [50, 59], 'subject': [51], 'extensive': [53], 'testing.': [54], 'The': [55, 154], 'optimal': [56, 90], 'parameters': [57], 'will': [58, 157], 'not': [60], 'only': [61], 'vary': [62], 'between': [63, 112], 'surveys,': [64], 'but': [65], 'also': [66, 117], 'within': [67], 'survey.': [69, 102], 'An': [70], 'automatic': [71], 'process': [73], 'based': [74], 'on': [75], 'deep': [76], 'learning': [77, 189, 214], 'can': [78], 'be': [79], 'used': [80], 'with': [81, 130, 149, 247], 'traditional': [83], 'suppression': [85], 'algorithm': [86], 'pick': [88], 'the': [89, 96, 101, 107, 136, 146, 159, 250], 'result': [93], 'even': [94], 'if': [95], 'best': [97], 'parameterization': [98], 'varies': [99], 'throughout': [100], 'We': [103], 'show': [104, 135], 'how': [105], 'extending': [106], 'from': [109], 'purely': [110], 'differentiating': [111], 'signal': [115, 129, 152], 'include': [118], 'additional': [120], 'mixed': [121, 138], 'class': [122, 139], 'helps': [123, 141], 'identify': [125, 143], 'regions': [126], 'visible': [128], 'residual': [131], 'noise.': [132], 'Similarly,': [133], 'we': [134], 'same': [137], 'approach': [140], 'areas': [144], 'in': [145, 215, 244], 'attenuated': [147], 'energy': [148], 'traces': [150], 'leakage.': [153], 'improved': [155], 'make': [158], 'automated': [160], 'QC': [161], 'procedure': [162], 'more': [163], 'robust.Presentation': [164], 'Date:': [165], 'Tuesday,': [166], 'October': [167], '13,': [168], '2020Session': [169], 'Start': [170], 'Time:': [171, 174], '1:50': [172], 'PMPresentation': [173], '2:15': [175], 'PMLocation:': [176], 'Poster': [177], 'Station': [178], '11Presentation': [179], 'Type:': [180], 'PosterKeywords:': [181], 'noise,': [182], 'networks,': [184], 'machine': [185, 213], 'learningPermalink:': [186], 'https://doi.org/10.1190/segam2020-3425046.1FiguresReferencesRelatedDetailsCited': [187], 'bySelf-supervised': [188], 'for': [190], 'removalYuan': [194], 'Zi,': [195], 'Shirui': [196], 'Wang,': [197], 'Pengyu': [198], 'Yuan,': [199], 'Xuqing': [200], 'Wu,': [201], 'Jiefu': [202], 'Chen,': [203], 'Zhu': [205], 'Han15': [206], 'August': [207], '2022Framework': [208], 'standalone': [210], 'applications': [211], 'processingTony': [217], 'Martin,': [218], 'Farmani,': [220], 'Pedersen,': [222, 270], 'Elena': [224], 'Klochikhina1': [225], 'September': [226], '2021': [227], 'SEG': [228, 284], '2020ISSN': [233], '(print):1052-3812': [234], 'ISSN': [235], '(online):1949-4645Copyright:': [236], '2020': [237, 242, 262], 'Pages:': [238], '3887': [239], 'publication': [240], 'data©': [241], 'Published': [243], 'electronic': [245], 'format': [246], 'permission': [248], 'by': [249], 'Society': [251], 'Exploration': [253, 256], 'GeophysicistsPublisher:Society': [254], 'Geophysicists': [257], 'HistoryPublished': [258], 'Online:': [259], '30': [260], 'Sep': [261], 'CITATION': [263], 'INFORMATION': [264], 'Farmani': [266], '(2020),': [271], '"Application': [272], 'attenuation,"': [283], ':': [289], '2868-2872.': [290], 'https://doi.org/10.1190/segam2020-3425046.1': [291], 'Plain-Language': [292], 'Summary': [293], 'Keywordsnoiseneural': [294], 'networksmachine': [295], 'learningPDF': [296], 'DownloadLoading': [297], '...': [298]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3090837333', 'counts_by_year': [{'year': 2023, 'cited_by_count': 2}, {'year': 2022, 'cited_by_count': 1}, {'year': 2021, 'cited_by_count': 1}], 'updated_date': '2024-12-10T11:03:30.976527', 'created_date': '2020-10-08'}