Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3090227305', 'doi': 'https://doi.org/10.1109/ijcnn48605.2020.9206835', 'title': 'Knowledge-based Context-aware Multi-turn Conversational Model with Hierarchical Attention', 'display_name': 'Knowledge-based Context-aware Multi-turn Conversational Model with Hierarchical Attention', 'publication_year': 2020, 'publication_date': '2020-07-01', 'ids': {'openalex': 'https://openalex.org/W3090227305', 'doi': 'https://doi.org/10.1109/ijcnn48605.2020.9206835', 'mag': '3090227305'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/ijcnn48605.2020.9206835', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607707', 'display_name': '2022 International Joint Conference on Neural Networks (IJCNN)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5045933902', 'display_name': 'Chunquan Chen', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I139759216', 'display_name': 'Beijing University of Posts and Telecommunications', 'ror': 'https://ror.org/04w9fbh59', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I139759216']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Chunquan Chen', 'raw_affiliation_strings': ['School of Information and Communication Engineering, Beijing University of Post and Telecommunications, Beijing, China'], 'affiliations': [{'raw_affiliation_string': 'School of Information and Communication Engineering, Beijing University of Post and Telecommunications, Beijing, China', 'institution_ids': ['https://openalex.org/I139759216']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5100391315', 'display_name': 'Si Li', 'orcid': 'https://orcid.org/0000-0001-9823-3870'}, 'institutions': [{'id': 'https://openalex.org/I139759216', 'display_name': 'Beijing University of Posts and Telecommunications', 'ror': 'https://ror.org/04w9fbh59', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I139759216']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Si Li', 'raw_affiliation_strings': ['School of Information and Communication Engineering, Beijing University of Post and Telecommunications, Beijing, China'], 'affiliations': [{'raw_affiliation_string': 'School of Information and Communication Engineering, Beijing University of Post and Telecommunications, Beijing, China', 'institution_ids': ['https://openalex.org/I139759216']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.079, 'has_fulltext': False, 'cited_by_count': 1, 'citation_normalized_percentile': {'value': 0.24003, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 61, 'max': 69}, 'biblio': {'volume': None, 'issue': None, 'first_page': '1', 'last_page': '8'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10028', 'display_name': 'Topic Modeling', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10028', 'display_name': 'Topic Modeling', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10181', 'display_name': 'Natural Language Processing Techniques', 'score': 0.9995, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12031', 'display_name': 'Speech and dialogue systems', 'score': 0.9995, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/context-model', 'display_name': 'Context model', 'score': 0.5480039}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.81263745}, {'id': 'https://openalex.org/C2779343474', 'wikidata': 'https://www.wikidata.org/wiki/Q3109175', 'display_name': 'Context (archaeology)', 'level': 2, 'score': 0.6334437}, {'id': 'https://openalex.org/C31170391', 'wikidata': 'https://www.wikidata.org/wiki/Q188619', 'display_name': 'Hierarchy', 'level': 2, 'score': 0.62991774}, {'id': 'https://openalex.org/C183322885', 'wikidata': 'https://www.wikidata.org/wiki/Q17007702', 'display_name': 'Context model', 'level': 3, 'score': 0.5480039}, {'id': 'https://openalex.org/C207685749', 'wikidata': 'https://www.wikidata.org/wiki/Q2088941', 'display_name': 'Domain knowledge', 'level': 2, 'score': 0.5039391}, {'id': 'https://openalex.org/C2777200299', 'wikidata': 'https://www.wikidata.org/wiki/Q52943', 'display_name': 'Conversation', 'level': 2, 'score': 0.479885}, {'id': 'https://openalex.org/C81917197', 'wikidata': 'https://www.wikidata.org/wiki/Q628760', 'display_name': 'Selection (genetic algorithm)', 'level': 2, 'score': 0.47029018}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.44964445}, {'id': 'https://openalex.org/C36503486', 'wikidata': 'https://www.wikidata.org/wiki/Q11235244', 'display_name': 'Domain (mathematical analysis)', 'level': 2, 'score': 0.4476388}, {'id': 'https://openalex.org/C204321447', 'wikidata': 'https://www.wikidata.org/wiki/Q30642', 'display_name': 'Natural language processing', 'level': 1, 'score': 0.35682565}, {'id': 'https://openalex.org/C46312422', 'wikidata': 'https://www.wikidata.org/wiki/Q11024', 'display_name': 'Communication', 'level': 1, 'score': 0.08990109}, {'id': 'https://openalex.org/C15744967', 'wikidata': 'https://www.wikidata.org/wiki/Q9418', 'display_name': 'Psychology', 'level': 0, 'score': 0.08460021}, {'id': 'https://openalex.org/C151730666', 'wikidata': 'https://www.wikidata.org/wiki/Q7205', 'display_name': 'Paleontology', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C162324750', 'wikidata': 'https://www.wikidata.org/wiki/Q8134', 'display_name': 'Economics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C34447519', 'wikidata': 'https://www.wikidata.org/wiki/Q179522', 'display_name': 'Market economy', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/ijcnn48605.2020.9206835', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607707', 'display_name': '2022 International Joint Conference on Neural Networks (IJCNN)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 46, 'referenced_works': ['https://openalex.org/W10957333', 'https://openalex.org/W1591706642', 'https://openalex.org/W1902237438', 'https://openalex.org/W1940872118', 'https://openalex.org/W2064675550', 'https://openalex.org/W2101105183', 'https://openalex.org/W2127795553', 'https://openalex.org/W2130942839', 'https://openalex.org/W2133564696', 'https://openalex.org/W2157331557', 'https://openalex.org/W2250645263', 'https://openalex.org/W2296712013', 'https://openalex.org/W2395531022', 'https://openalex.org/W2552027021', 'https://openalex.org/W2561529111', 'https://openalex.org/W2584185835', 'https://openalex.org/W2586847566', 'https://openalex.org/W2606974598', 'https://openalex.org/W2740747242', 'https://openalex.org/W2741375528', 'https://openalex.org/W2754194354', 'https://openalex.org/W2761590056', 'https://openalex.org/W2799176105', 'https://openalex.org/W2807873315', 'https://openalex.org/W2890276793', 'https://openalex.org/W2891103209', 'https://openalex.org/W2899386490', 'https://openalex.org/W2913443447', 'https://openalex.org/W2950902819', 'https://openalex.org/W2962788840', 'https://openalex.org/W2962883855', 'https://openalex.org/W2962944953', 'https://openalex.org/W2962965405', 'https://openalex.org/W2963206148', 'https://openalex.org/W2963360026', 'https://openalex.org/W2963520511', 'https://openalex.org/W2963544536', 'https://openalex.org/W2963790827', 'https://openalex.org/W2963825865', 'https://openalex.org/W2963871484', 'https://openalex.org/W2963929190', 'https://openalex.org/W2963963856', 'https://openalex.org/W2964207259', 'https://openalex.org/W2964308564', 'https://openalex.org/W3022187094', 'https://openalex.org/W3106274079'], 'related_works': ['https://openalex.org/W3213252596', 'https://openalex.org/W3093134843', 'https://openalex.org/W2772323916', 'https://openalex.org/W2374116601', 'https://openalex.org/W1968552888', 'https://openalex.org/W1649619740', 'https://openalex.org/W1583422155', 'https://openalex.org/W1534006406', 'https://openalex.org/W1527532029', 'https://openalex.org/W1511346092'], 'abstract_inverted_index': {'We': [0, 78, 99], 'study': [1], 'response': [2, 13, 58, 92, 178], 'generation': [3, 14, 93], 'in': [4, 51, 70, 90, 117, 156], 'multi-turn': [5], 'open-': [6], 'domain': [7, 37], 'dialogue': [8, 20, 31, 49, 72, 82, 97, 112, 133, 149, 158], 'systems.': [9, 98], 'Background': [10], 'knowledge': [11, 56, 86, 116, 137, 170, 175], 'based': [12, 103], 'has': [15], 'been': [16], 'developed': [17], 'to': [18, 35, 44, 109, 127, 144, 152, 166], 'make': [19], 'models': [21, 32, 64], 'generate': [22, 75], 'more': [23, 196], 'informative': [24, 197], 'and': [25, 42, 57, 74, 84, 114, 151, 177, 198], 'appropriate': [26, 199], 'responses.': [27, 77], 'However,': [28], 'these': [29, 63], 'knowledge-based': [30], 'are': [33], 'limited': [34], 'the': [36, 46, 52, 71, 91, 129, 146, 157, 189], 'of': [38, 48, 54, 94, 132, 148, 169, 194], 'single': [39], 'round': [40], 'conversation,': [41], 'fail': [43], 'consider': [45, 110], 'role': [47], 'context': [50, 73, 83, 113, 134, 150], 'selection': [53, 176], 'relevant': [55, 85, 115], 'generation.': [59, 179], 'As': [60], 'a': [61, 101, 118, 161], 'result,': [62], 'might': [65], 'lose': [66], 'some': [67], 'useful': [68], 'information': [69, 155], 'irrelevant': [76], 'argue': [79], 'that': [80, 188], 'both': [81, 111], 'play': [87], 'important': [88, 154, 167], 'roles': [89], 'multiturn': [95], 'open-domain': [96], 'propose': [100], 'Knowledge-': [102], 'Context-aware': [104], 'Multi-turn': [105], 'Conversational': [106], '(KCMC)': [107], 'model': [108, 145, 191], 'unified': [119], 'framework.': [120], 'The': [121], 'Knowledge': [122], 'Fusion': [123], 'module': [124], 'is': [125, 192], 'designed': [126], 'augment': [128], 'semantic': [130], 'representation': [131], 'with': [135], 'associated': [136], 'triples.': [138], 'And': [139], 'we': [140, 186], 'introduce': [141], 'hierarchical': [142, 162], 'encoders': [143], 'hierarchy': [147], 'capture': [153], 'context.': [159], 'Furthermore,': [160], 'attention': [163], 'mechanism': [164], 'attends': [165], 'parts': [168], 'triples,': [171], 'which': [172], 'facilitates': [173], 'better': [174], 'Through': [180], 'extensive': [181], 'experiments': [182], 'on': [183], 'two': [184], 'datasets,': [185], 'demonstrate': [187], 'proposed': [190], 'capable': [193], 'generating': [195], 'responses': [200], 'than': [201], 'baseline': [202], 'models.': [203]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3090227305', 'counts_by_year': [{'year': 2023, 'cited_by_count': 1}], 'updated_date': '2024-12-08T09:17:19.747824', 'created_date': '2020-10-08'}