Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3080448949', 'doi': 'https://doi.org/10.15802/stp2020/208233', 'title': 'RESEARCH OF TWO APPROACHES TO DETECT NETWORK ATTACKS USING NEURAL NETWORK TECHNOLOGIES', 'display_name': 'RESEARCH OF TWO APPROACHES TO DETECT NETWORK ATTACKS USING NEURAL NETWORK TECHNOLOGIES', 'publication_year': 2020, 'publication_date': '2020-07-17', 'ids': {'openalex': 'https://openalex.org/W3080448949', 'doi': 'https://doi.org/10.15802/stp2020/208233', 'mag': '3080448949'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.15802/stp2020/208233', 'pdf_url': 'http://stp.diit.edu.ua/article/download/208233/209371', 'source': {'id': 'https://openalex.org/S2764396440', 'display_name': 'Science and Transport Progress', 'issn_l': '2307-3489', 'issn': ['2307-3489', '2307-6666'], 'is_oa': True, 'is_in_doaj': True, 'is_core': False, 'host_organization': 'https://openalex.org/P4310321219', 'host_organization_name': 'Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan', 'host_organization_lineage': ['https://openalex.org/P4310321219'], 'host_organization_lineage_names': ['Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'diamond', 'oa_url': 'http://stp.diit.edu.ua/article/download/208233/209371', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5064876305', 'display_name': 'Victoria Pakhomova', 'orcid': 'https://orcid.org/0000-0002-0022-099X'}, 'institutions': [{'id': 'https://openalex.org/I2802037141', 'display_name': 'Dnipro National University of Railway Transport named after Academician V. Lazaryan', 'ror': 'https://ror.org/04b5zca04', 'country_code': 'UA', 'type': 'education', 'lineage': ['https://openalex.org/I2802037141']}], 'countries': ['UA'], 'is_corresponding': False, 'raw_author_name': 'None V. M. Pakhomova', 'raw_affiliation_strings': ['Dnipro National University of Railway Transport named after Academician V. Lazaryan, Ukraine'], 'affiliations': [{'raw_affiliation_string': 'Dnipro National University of Railway Transport named after Academician V. Lazaryan, Ukraine', 'institution_ids': ['https://openalex.org/I2802037141']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5027473928', 'display_name': 'M. S. Konnov', 'orcid': 'https://orcid.org/0000-0001-7212-7631'}, 'institutions': [{'id': 'https://openalex.org/I2802037141', 'display_name': 'Dnipro National University of Railway Transport named after Academician V. Lazaryan', 'ror': 'https://ror.org/04b5zca04', 'country_code': 'UA', 'type': 'education', 'lineage': ['https://openalex.org/I2802037141']}], 'countries': ['UA'], 'is_corresponding': False, 'raw_author_name': 'None M. S. Konnov', 'raw_affiliation_strings': ['Dnipro National University of Railway Transport named after Academician V. Lazaryan, Ukraine'], 'affiliations': [{'raw_affiliation_string': 'Dnipro National University of Railway Transport named after Academician V. Lazaryan, Ukraine', 'institution_ids': ['https://openalex.org/I2802037141']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': {'value': 0, 'currency': 'USD', 'value_usd': 0, 'provenance': 'doaj'}, 'apc_paid': None, 'fwci': 1.02, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 9, 'citation_normalized_percentile': {'value': 0.655448, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 85, 'max': 86}, 'biblio': {'volume': None, 'issue': '3(87)', 'first_page': '81', 'last_page': '93'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10400', 'display_name': 'Network Security and Intrusion Detection', 'score': 0.9976, 'subfield': {'id': 'https://openalex.org/subfields/1705', 'display_name': 'Computer Networks and Communications'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10400', 'display_name': 'Network Security and Intrusion Detection', 'score': 0.9976, 'subfield': {'id': 'https://openalex.org/subfields/1705', 'display_name': 'Computer Networks and Communications'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T13983', 'display_name': 'Cybersecurity and Information Systems', 'score': 0.9872, 'subfield': {'id': 'https://openalex.org/subfields/1705', 'display_name': 'Computer Networks and Communications'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T14470', 'display_name': 'Advanced Data Processing Techniques', 'score': 0.9871, 'subfield': {'id': 'https://openalex.org/subfields/2207', 'display_name': 'Control and Systems Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.81277657}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7281135}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.59641933}, {'id': 'https://openalex.org/C64869954', 'wikidata': 'https://www.wikidata.org/wiki/Q1859747', 'display_name': 'False positive paradox', 'level': 2, 'score': 0.5148234}, {'id': 'https://openalex.org/C134342201', 'wikidata': 'https://www.wikidata.org/wiki/Q7246859', 'display_name': 'Probabilistic neural network', 'level': 4, 'score': 0.4966219}, {'id': 'https://openalex.org/C124101348', 'wikidata': 'https://www.wikidata.org/wiki/Q172491', 'display_name': 'Data mining', 'level': 1, 'score': 0.4579597}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.45684445}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.42265475}, {'id': 'https://openalex.org/C175202392', 'wikidata': 'https://www.wikidata.org/wiki/Q2434543', 'display_name': 'Time delay neural network', 'level': 3, 'score': 0.3885172}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.15802/stp2020/208233', 'pdf_url': 'http://stp.diit.edu.ua/article/download/208233/209371', 'source': {'id': 'https://openalex.org/S2764396440', 'display_name': 'Science and Transport Progress', 'issn_l': '2307-3489', 'issn': ['2307-3489', '2307-6666'], 'is_oa': True, 'is_in_doaj': True, 'is_core': False, 'host_organization': 'https://openalex.org/P4310321219', 'host_organization_name': 'Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan', 'host_organization_lineage': ['https://openalex.org/P4310321219'], 'host_organization_lineage_names': ['Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://zenodo.org/record/6399059', 'pdf_url': 'https://zenodo.org/record/6399059/files/208233-%D0%A2%D0%B5%D0%BA%D1%81%D1%82%20%D1%81%D1%82%D0%B0%D1%82%D1%82%D1%96-471221-1-10-20200804.pdf', 'source': {'id': 'https://openalex.org/S4306400562', 'display_name': 'Zenodo (CERN European Organization for Nuclear Research)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I67311998', 'host_organization_name': 'European Organization for Nuclear Research', 'host_organization_lineage': ['https://openalex.org/I67311998'], 'host_organization_lineage_names': ['European Organization for Nuclear Research'], 'type': 'repository'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.15802/stp2020/208233', 'pdf_url': 'http://stp.diit.edu.ua/article/download/208233/209371', 'source': {'id': 'https://openalex.org/S2764396440', 'display_name': 'Science and Transport Progress', 'issn_l': '2307-3489', 'issn': ['2307-3489', '2307-6666'], 'is_oa': True, 'is_in_doaj': True, 'is_core': False, 'host_organization': 'https://openalex.org/P4310321219', 'host_organization_name': 'Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan', 'host_organization_lineage': ['https://openalex.org/P4310321219'], 'host_organization_lineage_names': ['Dnipropetrovsk National University of Railway Transport named after academician V. Lazaryan'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 9, 'referenced_works': ['https://openalex.org/W1152223117', 'https://openalex.org/W2039377530', 'https://openalex.org/W2126304919', 'https://openalex.org/W2236015499', 'https://openalex.org/W2329795475', 'https://openalex.org/W2476200409', 'https://openalex.org/W2562670297', 'https://openalex.org/W2807738499', 'https://openalex.org/W2924689635'], 'related_works': ['https://openalex.org/W4285294654', 'https://openalex.org/W2603525251', 'https://openalex.org/W2369662652', 'https://openalex.org/W2357447513', 'https://openalex.org/W2354938404', 'https://openalex.org/W2149846955', 'https://openalex.org/W2085961337', 'https://openalex.org/W1595652908', 'https://openalex.org/W1584270863', 'https://openalex.org/W127966330'], 'abstract_inverted_index': {'Purpose.': [0], 'At': [1], 'the': [2, 11, 48, 52, 64, 74, 83, 99, 103, 113, 116, 127, 132, 143, 146, 182, 190, 209, 216, 233, 247, 257, 265, 270, 275, 278, 281, 295, 304, 312, 315, 318, 321, 334, 344, 347, 350, 353, 366, 378], 'present': [3], 'stage,': [4, 115], 'network': [5, 22, 41, 44, 65, 81, 223, 301, 336, 368], 'attack': [6, 66, 84, 104, 117], 'detection': [7, 67], 'systems': [8], 'based': [9, 46, 77, 206], 'on': [10, 38, 47, 78, 126, 142, 207], 'following': [12, 75, 210], 'neural': [13, 43, 80, 93, 128, 173, 240, 249, 261, 289, 300, 328, 335, 360, 367, 385], 'networks': [14, 94, 129, 174, 241, 250, 290, 329, 361, 386], 'are': [15], 'most': [16], 'often': [17], 'offered:': [18], 'multilayer': [19], 'perceptron,': [20], 'Kohonen': [21], 'or': [23], 'self-organizing': [24], 'map': [25], 'and': [26, 88, 111, 167, 229, 294, 332, 364], 'their': [27, 140], 'combinations.': [28], 'The': [29], 'efficiency': [30, 379], 'problem': [31], 'of': [32, 51, 91, 139, 145, 162, 172, 184, 218, 222, 235, 239, 260, 264, 269, 277, 285, 288, 298, 314, 320, 327, 346, 352, 359, 380, 384], 'two': [33, 176], 'approaches': [34, 177], 'to': [35, 63, 72, 120, 274, 303, 311, 343], 'detect': [36], 'attacks': [37], 'a': [39, 121, 135, 299], 'computer': [40], 'using': [42, 149, 236, 324, 333, 356, 365, 381], 'technology': [45], 'normalized': [49], 'data': [50], 'open': [53], 'NSL-KDD': [54], 'database': [55], 'is': [56, 70, 291, 307, 330, 362, 375], 'considered.': [57], 'Methodology.': [58], 'As': [59], 'an': [60, 89, 237, 286, 325, 357, 382], 'architectural': [61], 'solution': [62], 'system,': [68], 'it': [69], 'proposed': [71], 'consider': [73], 'approaches:': [76], 'one': [79], 'determining': [82], 'class': [85, 118], '(first': [86], 'approach)': [87, 306, 339, 371], 'ensemble': [90, 238, 287, 326, 358, 383], 'five': [92], '(second': [95, 242, 387], 'approach),': [96], 'which': [97, 208, 231, 374], 'at': [98], 'first': [100, 266, 279, 305, 322, 338, 370], 'stage': [101], 'determines': [102], 'category': [105], '(DoS,': [106], 'Probe,': [107], 'U2R': [108], ',': [109], 'R2L),': [110], 'in': [112, 131], 'second': [114, 271, 316, 354], 'belonging': [119], 'certain': [122], 'category.': [123], 'Findings.': [124], 'Based': [125], 'created': [130, 248], 'MatLAB': [133], 'program,': [134], 'study': [136], 'was': [137], 'conducted': [138], 'error': [141, 319, 351], 'length': [144], 'training': [147, 151], 'sample': [148], 'various': [150, 188, 252], 'algorithms:': [152], 'Levenberg-Marquardt;': [153], 'Bayesian': [154], 'Regularization;': [155], 'Scaled': [156], 'Conjugate': [157], 'Gradient': [158], 'with': [159, 175, 187, 251], 'different': [160], 'numbers': [161], 'hidden': [163], 'neurons': [164], '(minimum,': [165], 'average': [166, 282], 'maximum).': [168], 'Certain': [169], 'optimal': [170], 'parameters': [171], 'were': [178, 212, 255], 'determined.': [179], 'Originality.': [180], 'In': [181], 'course': [183], 'conducting': [185], 'experiments': [186], 'approaches,': [189, 253], 'results': [191, 276, 313, 345], 'obtained': [192], 'were:': [193], 'TP': [194], '(True': [195, 204], 'Positive);': [196, 199], 'FP': [197], '(False': [198, 201], 'FN': [200], 'Negative);': [202], 'TN': [203], 'Negative),': [205], 'indicators': [211], 'calculated': [213], 'for': [214], 'assessing': [215], 'quality': [217], 'solutions:': [219], 'correct': [220], 'determination': [221], 'attacks;': [224], 'false': [225], 'positives;': [226], 'reliability;': [227], 'accuracy': [228], 'completeness,': [230], 'prove': [232], 'feasibility': [234], 'approach).': [243, 388], 'Practical': [244], 'value.': [245], 'On': [246], 'studies': [254], 'conducted:': [256], 'operating': [258, 283, 296], 'time': [259, 284, 297], 'networks;': [262], 'errors': [263, 268], 'kind;': [267], 'kind.': [272], 'According': [273, 310, 342], 'study,': [280, 317, 349], '0.92': [292], 's,': [293], '(according': [302], '2.21': [308], 's.': [309], 'kind': [323, 355], '2.17%,': [331], '(the': [337, 369], '–': [340, 372], '7.39%.': [341], 'third': [348], '3.91%,': [363], '6.96%,': [373], 'confirmed': [376], 'by': [377]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3080448949', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 6}, {'year': 2020, 'cited_by_count': 2}], 'updated_date': '2025-01-15T19:28:13.376519', 'created_date': '2020-09-01'}