Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3037765194', 'doi': 'https://doi.org/10.1038/s41598-020-67441-4', 'title': 'A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI', 'display_name': 'A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI', 'publication_year': 2020, 'publication_date': '2020-06-29', 'ids': {'openalex': 'https://openalex.org/W3037765194', 'doi': 'https://doi.org/10.1038/s41598-020-67441-4', 'mag': '3037765194', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/32601367', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/7324398'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1038/s41598-020-67441-4', 'pdf_url': 'https://www.nature.com/articles/s41598-020-67441-4.pdf', 'source': {'id': 'https://openalex.org/S196734849', 'display_name': 'Scientific Reports', 'issn_l': '2045-2322', 'issn': ['2045-2322'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319908', 'host_organization_name': 'Nature Portfolio', 'host_organization_lineage': ['https://openalex.org/P4310319908', 'https://openalex.org/P4310319965'], 'host_organization_lineage_names': ['Nature Portfolio', 'Springer Nature'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'https://www.nature.com/articles/s41598-020-67441-4.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5058410906', 'display_name': 'Qiyuan Hu', 'orcid': 'https://orcid.org/0000-0002-3326-6441'}, 'institutions': [{'id': 'https://openalex.org/I40347166', 'display_name': 'University of Chicago', 'ror': 'https://ror.org/024mw5h28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I40347166']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Qiyuan Hu', 'raw_affiliation_strings': ['Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA'], 'affiliations': [{'raw_affiliation_string': 'Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA', 'institution_ids': ['https://openalex.org/I40347166']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5032409695', 'display_name': 'Heather M. Whitney', 'orcid': 'https://orcid.org/0000-0002-7258-1102'}, 'institutions': [{'id': 'https://openalex.org/I40347166', 'display_name': 'University of Chicago', 'ror': 'https://ror.org/024mw5h28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I40347166']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Heather M. Whitney', 'raw_affiliation_strings': ['Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA'], 'affiliations': [{'raw_affiliation_string': 'Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA', 'institution_ids': ['https://openalex.org/I40347166']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5049042648', 'display_name': 'Maryellen L. Giger', 'orcid': 'https://orcid.org/0000-0001-5482-9728'}, 'institutions': [{'id': 'https://openalex.org/I40347166', 'display_name': 'University of Chicago', 'ror': 'https://ror.org/024mw5h28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I40347166']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Maryellen L. Giger', 'raw_affiliation_strings': ['Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA'], 'affiliations': [{'raw_affiliation_string': 'Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Ave., Chicago, IL, MC202660637, USA', 'institution_ids': ['https://openalex.org/I40347166']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': {'value': 1890, 'currency': 'EUR', 'value_usd': 2190, 'provenance': 'doaj'}, 'apc_paid': {'value': 1890, 'currency': 'EUR', 'value_usd': 2190, 'provenance': 'doaj'}, 'fwci': 13.677, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 142, 'citation_normalized_percentile': {'value': 0.999972, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '10', 'issue': '1', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10862', 'display_name': 'AI in cancer detection', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10862', 'display_name': 'AI in cancer detection', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12422', 'display_name': 'Radiomics and Machine Learning in Medical Imaging', 'score': 0.9979, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T12702', 'display_name': 'Brain Tumor Detection and Classification', 'score': 0.9922, 'subfield': {'id': 'https://openalex.org/subfields/2808', 'display_name': 'Neurology'}, 'field': {'id': 'https://openalex.org/fields/28', 'display_name': 'Neuroscience'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/multiparametric-mri', 'display_name': 'Multiparametric MRI', 'score': 0.6416989}, {'id': 'https://openalex.org/keywords/breast-mri', 'display_name': 'Breast MRI', 'score': 0.4261672}], 'concepts': [{'id': 'https://openalex.org/C530470458', 'wikidata': 'https://www.wikidata.org/wiki/Q128581', 'display_name': 'Breast cancer', 'level': 3, 'score': 0.6736898}, {'id': 'https://openalex.org/C2910607126', 'wikidata': 'https://www.wikidata.org/wiki/Q48790829', 'display_name': 'Multiparametric MRI', 'level': 4, 'score': 0.6416989}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.5125332}, {'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.4451319}, {'id': 'https://openalex.org/C2777111374', 'wikidata': 'https://www.wikidata.org/wiki/Q4959770', 'display_name': 'Breast MRI', 'level': 5, 'score': 0.4261672}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.41091418}, {'id': 'https://openalex.org/C19527891', 'wikidata': 'https://www.wikidata.org/wiki/Q1120908', 'display_name': 'Medical physics', 'level': 1, 'score': 0.40995696}, {'id': 'https://openalex.org/C126838900', 'wikidata': 'https://www.wikidata.org/wiki/Q77604', 'display_name': 'Radiology', 'level': 1, 'score': 0.40445185}, {'id': 'https://openalex.org/C121608353', 'wikidata': 'https://www.wikidata.org/wiki/Q12078', 'display_name': 'Cancer', 'level': 2, 'score': 0.34748933}, {'id': 'https://openalex.org/C2780472235', 'wikidata': 'https://www.wikidata.org/wiki/Q324634', 'display_name': 'Mammography', 'level': 4, 'score': 0.2675311}, {'id': 'https://openalex.org/C2780192828', 'wikidata': 'https://www.wikidata.org/wiki/Q181257', 'display_name': 'Prostate cancer', 'level': 3, 'score': 0.12220025}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.12059304}], 'mesh': [{'descriptor_ui': 'D001940', 'descriptor_name': 'Breast', 'qualifier_ui': 'Q000000981', 'qualifier_name': 'diagnostic imaging', 'is_major_topic': True}, {'descriptor_ui': 'D001943', 'descriptor_name': 'Breast Neoplasms', 'qualifier_ui': 'Q000000981', 'qualifier_name': 'diagnostic imaging', 'is_major_topic': True}, {'descriptor_ui': 'D000077321', 'descriptor_name': 'Deep Learning', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D003936', 'descriptor_name': 'Diagnosis, Computer-Assisted', 'qualifier_ui': 'Q000379', 'qualifier_name': 'methods', 'is_major_topic': True}, {'descriptor_ui': 'D000081364', 'descriptor_name': 'Multiparametric Magnetic Resonance Imaging', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D000328', 'descriptor_name': 'Adult', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D000368', 'descriptor_name': 'Aged', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D001940', 'descriptor_name': 'Breast', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D001943', 'descriptor_name': 'Breast Neoplasms', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D003936', 'descriptor_name': 'Diagnosis, Computer-Assisted', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D005260', 'descriptor_name': 'Female', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006801', 'descriptor_name': 'Humans', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D007090', 'descriptor_name': 'Image Interpretation, Computer-Assisted', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D008875', 'descriptor_name': 'Middle Aged', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D012189', 'descriptor_name': 'Retrospective Studies', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 4, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1038/s41598-020-67441-4', 'pdf_url': 'https://www.nature.com/articles/s41598-020-67441-4.pdf', 'source': {'id': 'https://openalex.org/S196734849', 'display_name': 'Scientific Reports', 'issn_l': '2045-2322', 'issn': ['2045-2322'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319908', 'host_organization_name': 'Nature Portfolio', 'host_organization_lineage': ['https://openalex.org/P4310319908', 'https://openalex.org/P4310319965'], 'host_organization_lineage_names': ['Nature Portfolio', 'Springer Nature'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc7324398', 'pdf_url': 'https://europepmc.org/articles/pmc7324398?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324398', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/32601367', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1038/s41598-020-67441-4', 'pdf_url': 'https://www.nature.com/articles/s41598-020-67441-4.pdf', 'source': {'id': 'https://openalex.org/S196734849', 'display_name': 'Scientific Reports', 'issn_l': '2045-2322', 'issn': ['2045-2322'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319908', 'host_organization_name': 'Nature Portfolio', 'host_organization_lineage': ['https://openalex.org/P4310319908', 'https://openalex.org/P4310319965'], 'host_organization_lineage_names': ['Nature Portfolio', 'Springer Nature'], 'type': 'journal'}, 'license': 'cc-by', 'license_id': 'https://openalex.org/licenses/cc-by', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/3', 'display_name': 'Good health and well-being', 'score': 0.72}], 'grants': [{'funder': 'https://openalex.org/F4320309691', 'funder_display_name': 'American Association of Physicists in Medicine', 'award_id': 'RSNA/AAPM Graduate Fellowship'}, {'funder': 'https://openalex.org/F4320332161', 'funder_display_name': 'National Institutes of Health', 'award_id': 'NIH NCI R15 CA227948'}, {'funder': 'https://openalex.org/F4320332161', 'funder_display_name': 'National Institutes of Health', 'award_id': 'NIH NCI U01 CA195564'}], 'datasets': [], 'versions': [], 'referenced_works_count': 38, 'referenced_works': ['https://openalex.org/W1560724230', 'https://openalex.org/W1624358519', 'https://openalex.org/W1667690988', 'https://openalex.org/W1686810756', 'https://openalex.org/W1963790578', 'https://openalex.org/W1983494692', 'https://openalex.org/W2007754818', 'https://openalex.org/W2008021606', 'https://openalex.org/W2016063621', 'https://openalex.org/W2038335084', 'https://openalex.org/W2042571564', 'https://openalex.org/W2069401973', 'https://openalex.org/W2087517982', 'https://openalex.org/W2108598243', 'https://openalex.org/W2115947304', 'https://openalex.org/W2121044470', 'https://openalex.org/W2123367805', 'https://openalex.org/W2126728600', 'https://openalex.org/W2133923351', 'https://openalex.org/W2142011021', 'https://openalex.org/W2154447435', 'https://openalex.org/W2155541015', 'https://openalex.org/W2253429366', 'https://openalex.org/W2291297129', 'https://openalex.org/W2328176404', 'https://openalex.org/W2345010043', 'https://openalex.org/W2346062110', 'https://openalex.org/W2510224130', 'https://openalex.org/W2725008604', 'https://openalex.org/W2765868079', 'https://openalex.org/W2773521565', 'https://openalex.org/W2789877281', 'https://openalex.org/W2801097543', 'https://openalex.org/W2900955936', 'https://openalex.org/W2912128568', 'https://openalex.org/W2949667497', 'https://openalex.org/W3023058184', 'https://openalex.org/W4298082496'], 'related_works': ['https://openalex.org/W4401574580', 'https://openalex.org/W4391375266', 'https://openalex.org/W4293567493', 'https://openalex.org/W4283166216', 'https://openalex.org/W4220675570', 'https://openalex.org/W3211468854', 'https://openalex.org/W3044502507', 'https://openalex.org/W2921288083', 'https://openalex.org/W2783391408', 'https://openalex.org/W2082435612'], 'abstract_inverted_index': {'Multiparametric': [0], 'magnetic': [1], 'resonance': [2], 'imaging': [3, 224], '(mpMRI)': [4], 'has': [5], 'been': [6], 'shown': [7], 'to': [8, 32, 75, 95], 'improve': [9, 207], "radiologists'": [10], 'performance': [11, 121, 209], 'in': [12, 222], 'the': [13, 79, 92, 106, 125, 134, 143, 197, 212, 218], 'clinical': [14, 42], 'diagnosis': [15, 29], 'of': [16, 45, 150], 'breast': [17, 34, 223], 'cancer.': [18], 'This': [19], 'machine': [20, 87], 'learning': [21, 27, 201], 'study': [22, 40, 54], 'develops': [23], 'a': [24, 56, 62], 'deep': [25, 199], 'transfer': [26, 200], 'computer-aided': [28], '(CADx)': [30], 'methodology': [31], 'diagnose': [33], 'cancer': [35], 'using': [36, 124, 133, 189], 'mpMRI.': [37], 'The': [38, 137, 162, 182], 'retrospective': [39], 'included': [41, 55], 'MR': [43, 53], 'images': [44], '927': [46], 'unique': [47], 'lesions': [48], 'from': [49, 78], '616': [50], 'women.': [51], 'Each': [52], 'dynamic': [57], 'contrast-enhanced': [58], '(DCE)-MRI': [59], 'sequence': [60], 'and': [61, 81, 84, 99, 115, 131, 156, 176, 216], 'T2-weighted': [63], '(T2w)': [64], 'MRI': [65], 'sequence.': [66], 'A': [67], 'pretrained': [68], 'convolutional': [69], 'neural': [70], 'network': [71], '(CNN)': [72], 'was': [73, 122], 'used': [74], 'extract': [76], 'features': [77, 94], 'DCE': [80, 190], 'T2w': [82], 'sequences,': [83], 'support': [85], 'vector': [86], 'classifiers': [88, 139], 'were': [89, 118], 'trained': [90], 'on': [91], 'CNN': [93], 'distinguish': [96], 'between': [97], 'benign': [98], 'malignant': [100], 'lesions.': [101], 'Three': [102], 'methods': [103], 'that': [104], 'integrate': [105], 'sequences': [107], 'at': [108], 'different': [109], 'levels': [110], '(image': [111], 'fusion,': [112, 114], 'feature': [113, 183], 'classifier': [116], 'fusion)': [117], 'investigated.': [119], 'Classification': [120], 'evaluated': [123], 'receiver': [126], 'operating': [127], 'characteristic': [128], '(ROC)': [129], 'curve': [130], 'compared': [132], 'DeLong': [135], 'test.': [136], 'single-sequence': [138], 'yielded': [140, 165], 'areas': [141], 'under': [142], 'ROC': [144], 'curves': [145], '(AUCs)': [146], '[95%': [147], 'confidence': [148], 'intervals]': [149], 'AUCDCE': [151], '=': [152, 158, 167, 172, 178], '0.85': [153, 168], '[0.82,': [154, 169], '0.88]': [155], 'AUCT2w': [157], '0.78': [159], '[0.75,': [160], '0.81].': [161], 'multiparametric': [163], 'schemes': [164], 'AUCImageFusion': [166], '0.88],': [170], 'AUCFeatureFusion': [171], '0.87': [173], '[0.84,': [174], '0.89],': [175], 'AUCClassifierFusion': [177], '0.86': [179], '[0.83,': [180], '0.88].': [181], 'fusion': [184], 'method': [185, 203], 'statistically': [186], 'significantly': [187], 'outperformed': [188], 'alone': [191], '(P': [192], '<': [193], '0.001).': [194], 'In': [195], 'conclusion,': [196], 'proposed': [198], 'CADx': [202], 'for': [204], 'mpMRI': [205], 'may': [206], 'diagnostic': [208], 'by': [210], 'reducing': [211], 'false': [213], 'positive': [214, 219], 'rate': [215], 'improving': [217], 'predictive': [220], 'value': [221], 'interpretation.': [225]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3037765194', 'counts_by_year': [{'year': 2024, 'cited_by_count': 26}, {'year': 2023, 'cited_by_count': 35}, {'year': 2022, 'cited_by_count': 42}, {'year': 2021, 'cited_by_count': 32}, {'year': 2020, 'cited_by_count': 6}], 'updated_date': '2025-01-12T04:13:41.672290', 'created_date': '2020-07-02'}