Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3035487542', 'doi': 'https://doi.org/10.1109/tim.2020.3002277', 'title': 'EDRNet: Encoder–Decoder Residual Network for Salient Object Detection of Strip Steel Surface Defects', 'display_name': 'EDRNet: Encoder–Decoder Residual Network for Salient Object Detection of Strip Steel Surface Defects', 'publication_year': 2020, 'publication_date': '2020-06-15', 'ids': {'openalex': 'https://openalex.org/W3035487542', 'doi': 'https://doi.org/10.1109/tim.2020.3002277', 'mag': '3035487542'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tim.2020.3002277', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S10892749', 'display_name': 'IEEE Transactions on Instrumentation and Measurement', 'issn_l': '0018-9456', 'issn': ['0018-9456', '1557-9662'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5031657441', 'display_name': 'Guorong Song', 'orcid': 'https://orcid.org/0000-0001-5329-6982'}, 'institutions': [{'id': 'https://openalex.org/I9224756', 'display_name': 'Northeastern University', 'ror': 'https://ror.org/03awzbc87', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I9224756']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Guorong Song', 'raw_affiliation_strings': ['Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China', 'School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China'], 'affiliations': [{'raw_affiliation_string': 'Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China', 'institution_ids': ['https://openalex.org/I9224756']}, {'raw_affiliation_string': 'School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China', 'institution_ids': ['https://openalex.org/I9224756']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5010927997', 'display_name': 'Kechen Song', 'orcid': 'https://orcid.org/0000-0002-7636-3460'}, 'institutions': [{'id': 'https://openalex.org/I9224756', 'display_name': 'Northeastern University', 'ror': 'https://ror.org/03awzbc87', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I9224756']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Kechen Song', 'raw_affiliation_strings': ['Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China', 'School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China'], 'affiliations': [{'raw_affiliation_string': 'Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China', 'institution_ids': ['https://openalex.org/I9224756']}, {'raw_affiliation_string': 'School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China', 'institution_ids': ['https://openalex.org/I9224756']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5043667109', 'display_name': 'Yunhui Yan', 'orcid': 'https://orcid.org/0000-0001-7121-2367'}, 'institutions': [{'id': 'https://openalex.org/I9224756', 'display_name': 'Northeastern University', 'ror': 'https://ror.org/03awzbc87', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I9224756']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Yunhui Yan', 'raw_affiliation_strings': ['Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China', 'School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China'], 'affiliations': [{'raw_affiliation_string': 'Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China', 'institution_ids': ['https://openalex.org/I9224756']}, {'raw_affiliation_string': 'School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China', 'institution_ids': ['https://openalex.org/I9224756']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 21.241, 'has_fulltext': False, 'cited_by_count': 177, 'citation_normalized_percentile': {'value': 0.999912, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '69', 'issue': '12', 'first_page': '9709', 'last_page': '9719'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11605', 'display_name': 'Visual Attention and Saliency Detection', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11605', 'display_name': 'Visual Attention and Saliency Detection', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12111', 'display_name': 'Industrial Vision Systems and Defect Detection', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/2209', 'display_name': 'Industrial and Manufacturing Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.999, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/robustness', 'display_name': 'Robustness', 'score': 0.62067616}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.74097764}, {'id': 'https://openalex.org/C155512373', 'wikidata': 'https://www.wikidata.org/wiki/Q287450', 'display_name': 'Residual', 'level': 2, 'score': 0.68207717}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.64099014}, {'id': 'https://openalex.org/C63479239', 'wikidata': 'https://www.wikidata.org/wiki/Q7353546', 'display_name': 'Robustness (evolution)', 'level': 3, 'score': 0.62067616}, {'id': 'https://openalex.org/C118505674', 'wikidata': 'https://www.wikidata.org/wiki/Q42586063', 'display_name': 'Encoder', 'level': 2, 'score': 0.6055615}, {'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.5886926}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.5184476}, {'id': 'https://openalex.org/C2776151529', 'wikidata': 'https://www.wikidata.org/wiki/Q3045304', 'display_name': 'Object detection', 'level': 3, 'score': 0.5128617}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.4740933}, {'id': 'https://openalex.org/C57273362', 'wikidata': 'https://www.wikidata.org/wiki/Q576722', 'display_name': 'Decoding methods', 'level': 2, 'score': 0.4734523}, {'id': 'https://openalex.org/C99498987', 'wikidata': 'https://www.wikidata.org/wiki/Q2210247', 'display_name': 'Noise (video)', 'level': 3, 'score': 0.43163708}, {'id': 'https://openalex.org/C2777210771', 'wikidata': 'https://www.wikidata.org/wiki/Q4927124', 'display_name': 'Block (permutation group theory)', 'level': 2, 'score': 0.4231917}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.37848288}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.1272066}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.09447402}, {'id': 'https://openalex.org/C55493867', 'wikidata': 'https://www.wikidata.org/wiki/Q7094', 'display_name': 'Biochemistry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C185592680', 'wikidata': 'https://www.wikidata.org/wiki/Q2329', 'display_name': 'Chemistry', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C104317684', 'wikidata': 'https://www.wikidata.org/wiki/Q7187', 'display_name': 'Gene', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tim.2020.3002277', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S10892749', 'display_name': 'IEEE Transactions on Instrumentation and Measurement', 'issn_l': '0018-9456', 'issn': ['0018-9456', '1557-9662'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [{'funder': 'https://openalex.org/F4320321001', 'funder_display_name': 'National Natural Science Foundation of China', 'award_id': '51374063'}, {'funder': 'https://openalex.org/F4320321001', 'funder_display_name': 'National Natural Science Foundation of China', 'award_id': '51805078'}], 'datasets': [], 'versions': [], 'referenced_works_count': 65, 'referenced_works': ['https://openalex.org/W1580389772', 'https://openalex.org/W1581590495', 'https://openalex.org/W1677182931', 'https://openalex.org/W1686810756', 'https://openalex.org/W1772076007', 'https://openalex.org/W1836465849', 'https://openalex.org/W1901129140', 'https://openalex.org/W1982075130', 'https://openalex.org/W1994922096', 'https://openalex.org/W2002574940', 'https://openalex.org/W2034810702', 'https://openalex.org/W2039313011', 'https://openalex.org/W2047670868', 'https://openalex.org/W2092072518', 'https://openalex.org/W2100470808', 'https://openalex.org/W21025885', 'https://openalex.org/W2114487471', 'https://openalex.org/W2128272608', 'https://openalex.org/W2128340050', 'https://openalex.org/W2132083787', 'https://openalex.org/W2156387975', 'https://openalex.org/W2164507445', 'https://openalex.org/W2194775991', 'https://openalex.org/W2196029350', 'https://openalex.org/W2346506533', 'https://openalex.org/W2412782625', 'https://openalex.org/W2560311620', 'https://openalex.org/W2588600710', 'https://openalex.org/W2598666589', 'https://openalex.org/W2744613561', 'https://openalex.org/W2744876417', 'https://openalex.org/W2762270259', 'https://openalex.org/W2791729216', 'https://openalex.org/W2799074129', 'https://openalex.org/W2799231793', 'https://openalex.org/W2807746031', 'https://openalex.org/W2808442315', 'https://openalex.org/W2884555738', 'https://openalex.org/W2884563051', 'https://openalex.org/W2884585870', 'https://openalex.org/W2886934227', 'https://openalex.org/W2890391196', 'https://openalex.org/W2895126795', 'https://openalex.org/W2902156419', 'https://openalex.org/W2907998578', 'https://openalex.org/W2913074553', 'https://openalex.org/W2938260698', 'https://openalex.org/W2938269868', 'https://openalex.org/W2939217524', 'https://openalex.org/W2942067373', 'https://openalex.org/W2944303778', 'https://openalex.org/W2948510860', 'https://openalex.org/W2949117887', 'https://openalex.org/W2961348656', 'https://openalex.org/W2963112696', 'https://openalex.org/W2963125010', 'https://openalex.org/W2963299740', 'https://openalex.org/W2963685207', 'https://openalex.org/W2963706010', 'https://openalex.org/W2963868681', 'https://openalex.org/W2994615081', 'https://openalex.org/W3000247513', 'https://openalex.org/W3104979525', 'https://openalex.org/W4288798638', 'https://openalex.org/W845365781'], 'related_works': ['https://openalex.org/W4391621807', 'https://openalex.org/W4390516098', 'https://openalex.org/W2990636717', 'https://openalex.org/W2969228573', 'https://openalex.org/W2963690996', 'https://openalex.org/W2949601986', 'https://openalex.org/W2788972299', 'https://openalex.org/W2560215812', 'https://openalex.org/W2521347458', 'https://openalex.org/W2161474341'], 'abstract_inverted_index': {'It': [0], 'is': [1, 191, 208], 'still': [2], 'a': [3, 54, 71, 214], 'challenging': [4], 'task': [5], 'to': [6, 15, 76, 87, 113, 148, 194], 'detect': [7], 'the': [8, 37, 66, 84, 89, 92, 96, 101, 107, 115, 129, 140, 151, 157, 162, 169, 195, 205], 'surface': [9], 'defects': [10], 'of': [11, 91, 118, 124], 'strip': [12], 'steel': [13], 'due': [14], 'its': [16], 'complex': [17, 41], 'variations,': [18], 'including': [19], 'variable': [20], 'defect': [21, 38, 80, 171], 'types,': [22], 'cluttered': [23], 'background,': [24], 'low': [25], 'contrast,': [26], 'and': [27, 43, 82, 106, 121, 127, 176, 201, 204], 'noise': [28], 'interference.': [29], 'The': [30, 183], 'existing': [31, 158], 'detection': [32, 57, 160, 206], 'methods': [33, 197], 'cannot': [34], 'effectively': [35, 177], 'segment': [36, 168], 'objects': [39, 172], 'from': [40], 'background': [42, 181], 'have': [44], 'poor': [45], 'real-time': [46], 'performance.': [47], 'To': [48], 'address': [49], 'these': [50], 'issues,': [51], 'we': [52, 69, 99, 138], 'propose': [53], 'novel': [55], 'saliency': [56, 132, 153, 159], 'method': [58, 190], 'based': [59], 'on': [60, 213], 'Encoder-Decoder': [61], 'Residual': [62], 'network': [63, 75], '(EDRNet).': [64], 'In': [65], 'encoder': [67], 'stage,': [68, 98], 'use': [70], 'fully': [72], 'convolutional': [73], 'neural': [74], 'extract': [77], 'rich': [78], 'multilevel': [79], 'features': [81, 117, 123], 'fuse': [83], 'attention': [85], 'mechanism': [86], 'accelerate': [88], 'convergence': [90], 'model.': [93], 'Then': [94], 'in': [95], 'decoder': [97, 109], 'adopt': [100], 'channels': [102], 'weighted': [103], 'block': [104, 110], '(CWB)': [105], 'residual': [108, 141], '(RDB)': [111], 'alternatively': [112], 'integrate': [114], 'spatial': [116, 131], 'shallower': [119], 'layers': [120, 126], 'semantic': [122], 'deep': [125], 'recover': [128], 'predicted': [130], 'values': [133], 'step': [134], 'by': [135], 'step.': [136], 'Finally,': [137], 'design': [139], 'refinement': [142], 'structure': [143], 'with': [144, 156, 173, 198], '1D': [145], 'filters': [146], '(RRS_1D)': [147], 'further': [149], 'optimize': [150], 'coarse': [152], 'map.': [154], 'Compared': [155], 'methods,': [161], 'deeply': [163], 'supervised': [164], 'EDRNet': [165], 'can': [166], 'accurately': [167], 'complete': [170], 'well-defined': [174], 'boundary': [175], 'filter': [178], 'out': [179], 'irrelevant': [180], 'noise.': [182], 'extensive': [184], 'experimental': [185], 'results': [186], 'prove': [187], 'that': [188], 'our': [189], 'consistently': [192], 'superior': [193], 'state-of-the-art': [196], 'large': [199], 'margins': [200], 'strong': [202], 'robustness,': [203], 'efficiency': [207], 'at': [209], 'over': [210], '27': [211], 'fps': [212], 'single': [215], 'GPU.': [216]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3035487542', 'counts_by_year': [{'year': 2024, 'cited_by_count': 42}, {'year': 2023, 'cited_by_count': 59}, {'year': 2022, 'cited_by_count': 46}, {'year': 2021, 'cited_by_count': 24}, {'year': 2020, 'cited_by_count': 2}], 'updated_date': '2024-12-21T15:11:07.104537', 'created_date': '2020-06-19'}