Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3014310718', 'doi': 'https://doi.org/10.1002/9781118445112.stat03141', 'title': 'Generalized Additive Models', 'display_name': 'Generalized Additive Models', 'publication_year': 2014, 'publication_date': '2014-04-22', 'ids': {'openalex': 'https://openalex.org/W3014310718', 'doi': 'https://doi.org/10.1002/9781118445112.stat03141', 'mag': '3014310718'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1002/9781118445112.stat03141', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306534814', 'display_name': 'Wiley StatsRef: Statistics Reference Online', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'other', 'type_crossref': 'other', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5045744709', 'display_name': 'Trevor Hastie', 'orcid': 'https://orcid.org/0000-0002-0164-3142'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'Trevor Hastie', 'raw_affiliation_strings': [], 'affiliations': []}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5027340494', 'display_name': 'Robert Tibshirani', 'orcid': 'https://orcid.org/0000-0003-0553-5090'}, 'institutions': [], 'countries': [], 'is_corresponding': False, 'raw_author_name': 'R. Tibshirani', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 3324, 'citation_normalized_percentile': {'value': 0.998966, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11871', 'display_name': 'Advanced Statistical Methods and Models', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11871', 'display_name': 'Advanced Statistical Methods and Models', 'score': 0.9993, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10640', 'display_name': 'Spectroscopy and Chemometric Analyses', 'score': 0.9968, 'subfield': {'id': 'https://openalex.org/subfields/1602', 'display_name': 'Analytical Chemistry'}, 'field': {'id': 'https://openalex.org/fields/16', 'display_name': 'Chemistry'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10320', 'display_name': 'Neural Networks and Applications', 'score': 0.9928, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/additive-model', 'display_name': 'Additive model', 'score': 0.60352254}, {'id': 'https://openalex.org/keywords/generalized-additive-model', 'display_name': 'Generalized additive model', 'score': 0.576232}], 'concepts': [{'id': 'https://openalex.org/C41587187', 'wikidata': 'https://www.wikidata.org/wiki/Q1501882', 'display_name': 'Generalized linear model', 'level': 2, 'score': 0.7203992}, {'id': 'https://openalex.org/C55974624', 'wikidata': 'https://www.wikidata.org/wiki/Q1188504', 'display_name': 'Exponential family', 'level': 2, 'score': 0.69706285}, {'id': 'https://openalex.org/C203223496', 'wikidata': 'https://www.wikidata.org/wiki/Q4681344', 'display_name': 'Additive model', 'level': 2, 'score': 0.60352254}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.5823667}, {'id': 'https://openalex.org/C194648359', 'wikidata': 'https://www.wikidata.org/wiki/Q3318054', 'display_name': 'Generalized additive model', 'level': 2, 'score': 0.576232}, {'id': 'https://openalex.org/C102366305', 'wikidata': 'https://www.wikidata.org/wiki/Q1097688', 'display_name': 'Nonparametric statistics', 'level': 2, 'score': 0.49659854}, {'id': 'https://openalex.org/C199335787', 'wikidata': 'https://www.wikidata.org/wiki/Q743364', 'display_name': 'Negative binomial distribution', 'level': 3, 'score': 0.49272612}, {'id': 'https://openalex.org/C100906024', 'wikidata': 'https://www.wikidata.org/wiki/Q205692', 'display_name': 'Poisson distribution', 'level': 2, 'score': 0.48876998}, {'id': 'https://openalex.org/C163175372', 'wikidata': 'https://www.wikidata.org/wiki/Q3339222', 'display_name': 'Linear model', 'level': 2, 'score': 0.47752205}, {'id': 'https://openalex.org/C14036430', 'wikidata': 'https://www.wikidata.org/wiki/Q3736076', 'display_name': 'Function (biology)', 'level': 2, 'score': 0.42292935}, {'id': 'https://openalex.org/C158622935', 'wikidata': 'https://www.wikidata.org/wiki/Q660848', 'display_name': 'Nonlinear system', 'level': 2, 'score': 0.41769755}, {'id': 'https://openalex.org/C140331021', 'wikidata': 'https://www.wikidata.org/wiki/Q1868104', 'display_name': 'Logit', 'level': 2, 'score': 0.41547728}, {'id': 'https://openalex.org/C28826006', 'wikidata': 'https://www.wikidata.org/wiki/Q33521', 'display_name': 'Applied mathematics', 'level': 1, 'score': 0.40742826}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.2722412}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C78458016', 'wikidata': 'https://www.wikidata.org/wiki/Q840400', 'display_name': 'Evolutionary biology', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1002/9781118445112.stat03141', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306534814', 'display_name': 'Wiley StatsRef: Statistics Reference Online', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'score': 0.53, 'id': 'https://metadata.un.org/sdg/12', 'display_name': 'Responsible consumption and production'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 19, 'referenced_works': ['https://openalex.org/W1528905581', 'https://openalex.org/W188554010', 'https://openalex.org/W2010295655', 'https://openalex.org/W2045925085', 'https://openalex.org/W2061531063', 'https://openalex.org/W2065540158', 'https://openalex.org/W2089322632', 'https://openalex.org/W2102201073', 'https://openalex.org/W2127666319', 'https://openalex.org/W2146766088', 'https://openalex.org/W2162430620', 'https://openalex.org/W2401931293', 'https://openalex.org/W2797291332', 'https://openalex.org/W2797463641', 'https://openalex.org/W2797583072', 'https://openalex.org/W3022598036', 'https://openalex.org/W4249303080', 'https://openalex.org/W4298876635', 'https://openalex.org/W4301861531'], 'related_works': ['https://openalex.org/W4297682689', 'https://openalex.org/W3204889546', 'https://openalex.org/W3157099140', 'https://openalex.org/W3000070579', 'https://openalex.org/W2993033172', 'https://openalex.org/W2605824594', 'https://openalex.org/W2488755384', 'https://openalex.org/W1782138404', 'https://openalex.org/W1597757222', 'https://openalex.org/W13203369'], 'abstract_inverted_index': {'Regression': [0], 'models': [1, 82, 194, 208, 227, 749, 1683], 'play': [2], 'an': [3, 352, 570, 671, 754, 836, 1394], 'important': [4], 'role': [5], 'in': [6, 36, 201, 242, 270, 322, 492, 529, 546, 644, 728, 747, 753, 818, 826, 829, 905, 1129, 1197, 1413, 1528, 1544, 1630, 1672, 1695, 1712], 'many': [7, 99], 'applied': [8], 'settings,': [9], 'by': [10, 209, 400, 418, 809, 1461], 'enabling': [11], 'predictive': [12], 'analysis,': [13, 959], 'revealing': [14], 'classification': [15], 'rules,': [16], 'and': [17, 56, 125, 182, 228, 281, 425, 453, 497, 584, 649, 702, 792, 825, 884, 918, 1002, 1065, 1078, 1125, 1182, 1215, 1245, 1252, 1267, 1275, 1315, 1327, 1399, 1463, 1465, 1621, 1657, 1710], 'providing': [18], 'data-analytic': [19], 'tools': [20], 'for': [21, 119, 161, 224, 238, 503, 579, 743, 821, 969, 1008, 1036, 1063, 1070, 1076, 1082, 1123, 1154, 1180, 1193, 1210, 1225, 1242, 1265, 1332, 1349, 1371, 1380, 1512, 1550, 1588, 1602, 1679, 1716], 'understanding': [22], 'the': [23, 63, 67, 70, 76, 79, 90, 95, 101, 104, 120, 134, 142, 180, 188, 202, 235, 296, 311, 337, 348, 367, 370, 401, 406, 409, 414, 426, 429, 442, 454, 459, 470, 488, 493, 506, 520, 541, 551, 557, 560, 592, 605, 617, 620, 624, 636, 661, 679, 684, 691, 694, 698, 707, 723, 774, 783, 793, 798, 802, 816, 864, 876, 885, 888, 894, 899, 914, 920, 927, 947, 950, 964, 976, 981, 984, 996, 999, 1017, 1021, 1056, 1083, 1088, 1091, 1107, 1113, 1117, 1136, 1139, 1150, 1155, 1191, 1194, 1198, 1201, 1206, 1211, 1218, 1230, 1243, 1262, 1276, 1293, 1297, 1300, 1304, 1307, 1318, 1321, 1325, 1328, 1333, 1337, 1347, 1355, 1360, 1363, 1372, 1387, 1414, 1418, 1422, 1435, 1441, 1447, 1456, 1471, 1480, 1483, 1493, 1507, 1513, 1547, 1551, 1563, 1578, 1603, 1617, 1633, 1639, 1689, 1713, 1725], 'interactions': [24], 'between': [25, 408], 'different': [26], 'variables.': [27], 'Although': [28], 'attractively': [29], 'simple,': [30], 'traditional': [31], 'linear': [32, 108, 193, 211, 373, 766, 804, 1031, 1068, 1273, 1281, 1290, 1334, 1382, 1600, 1643], 'regression': [33, 631, 700, 767, 777, 805, 823, 1431], 'often': [34, 151, 1451], 'fails': [35], 'practical': [37], 'situations': [38], 'because': [39], 'real-life': [40], 'effects': [41, 1626], 'are': [42, 130, 501, 1094, 1127, 1205, 1269, 1368, 1410], 'usually': [43], 'nonlinear.': [44], 'This': [45, 760], 'article': [46], 'describes': [47], 'statistical': [48, 1691], 'methods': [49, 74], 'that': [50, 245, 254, 268, 294, 339, 355, 363, 396, 596, 616, 627, 660, 971, 1042, 1226, 1229, 1359, 1386, 1506, 1583], 'may': [51, 197], 'be': [52, 199, 329, 351, 358, 398, 438, 610, 670, 751, 1170, 1497, 1577, 1667], 'used': [53, 727, 1224, 1586], 'to': [54, 65, 84, 97, 146, 156, 205, 288, 309, 328, 335, 413, 437, 446, 472, 519, 539, 568, 590, 609, 677, 683, 687, 869, 945, 1020, 1055, 1105, 1169, 1235, 1517, 1536, 1560, 1576, 1616, 1628, 1666], 'identify': [55], 'characterize': [57], 'general': [58, 1005], 'nonlinear': [59, 71, 240, 382, 1278, 1301], 'regressions,': [60], 'without': [61], 'requiring': [62], 'analyst': [64, 96], 'prespecify': [66], 'form': [68, 75], 'of': [69, 78, 89, 100, 103, 106, 122, 191, 250, 259, 298, 369, 411, 428, 433, 468, 490, 505, 512, 524, 544, 548, 553, 559, 573, 577, 594, 607, 619, 628, 632, 663, 665, 693, 764, 768, 782, 832, 882, 887, 923, 949, 963, 983, 998, 1010, 1016, 1099, 1116, 1119, 1220, 1222, 1240, 1255, 1260, 1292, 1324, 1336, 1352, 1354, 1362, 1374, 1397, 1403, 1421, 1446, 1470, 1473, 1479, 1546, 1557, 1655, 1661, 1688], 'relationship.': [72], 'These': [73, 168, 185], 'basis': [77], 'generalized': [80, 107, 192, 206, 704, 799, 1051, 1681], 'additive': [81, 143, 207, 226, 705, 800, 866, 1052, 1433, 1682], 'approach': [83], 'data': [85, 164, 402, 415, 494, 917, 965, 1143, 1641], 'analysis.': [86], 'The': [87, 110, 231, 509, 673, 739, 1121, 1132, 1340, 1476, 1555, 1610, 1647], 'choice': [88], 'link': [91, 112, 128, 136, 169], 'function': [92, 371], 'g': [93], 'permits': [94, 246], 'incorporate': [98], 'benefits': [102], 'methodology': [105], 'models.': [109], 'logit': [111, 1114, 1436], 'is': [113, 234, 275, 283, 320, 391, 458, 474, 536, 566, 622, 710, 726, 795, 806, 875, 992, 1046, 1153, 1217, 1233, 1283, 1303, 1390, 1425, 1432, 1450, 1466, 1486, 1684, 1722], 'widely': [114], 'viewed': [115], 'as': [116, 461, 626, 953, 986, 1286, 1608, 1686], 'highly': [117, 1650], 'appropriate': [118, 708], 'analysis': [121, 1527], 'binary': [123, 1057, 1080], 'data,': [124, 685], 'other': [126, 703, 1364], 'standard': [127, 1313, 1322, 1401, 1659], 'functions': [129, 170, 374, 383, 890], 'similarly': [131], 'useful.': [132], 'Besides': [133], 'identity': [135], 'g(μ)': [137, 153], '=': [138, 154, 314, 379, 448, 844, 859], 'μ,': [139], 'which': [140, 177, 196, 786, 1142, 1529], 'yields': [141, 597, 778], 'model': [144, 160, 312, 701, 867, 1054], 'corresponding': [145, 895, 1338, 1535], 'ordinary': [147], 'multiple': [148], 'regression,': [149], 'people': [150], 'use': [152, 528, 586, 763, 961, 997], 'lnμ': [155], 'give': [157, 787], 'a': [158, 221, 243, 247, 257, 276, 284, 290, 323, 392, 475, 479, 516, 580, 587, 629, 645, 656, 666, 688, 731, 769, 779, 788, 810, 906, 987, 1004, 1030, 1050, 1067, 1073, 1079, 1159, 1171, 1272, 1287, 1350, 1400, 1406, 1429, 1444, 1467, 1525, 1530, 1591, 1653, 1658, 1668, 1696], 'log-additive': [159], 'Poisson': [162, 166], 'count': [163], '(See': [165], 'Distribution).': [167], 'arise': [171], 'from': [172, 1702, 1724], 'exponential': [173], 'family': [174], 'sampling': [175], 'models,': [176, 706], 'also': [178, 1711], 'include': [179, 980], 'gamma': [181], 'negative‐binomial': [183], 'distributions.': [184], 'families': [186], 'generate': [187], 'well-known': [189], 'class': [190], '12,': [195], 'all': [198, 962, 1090, 1375, 1490], 'extended': [200], 'same': [203, 625], 'way': [204, 244], 'replacing': [210], 'terms': [212, 547, 1062, 1093], 'with': [213, 483, 730, 930, 995, 1060, 1096, 1158, 1177, 1393, 1489, 1499, 1590, 1625, 1652], 'nonparametric': [214, 1006], 'functions.': [215], 'In': [216, 440, 533, 600, 797, 1185, 1501], 'this': [217, 598, 614, 958, 1474, 1558, 1572, 1721], 'section': [218], 'we': [219, 255, 307, 333, 527, 603, 909, 941, 960, 979, 1027, 1040, 1523], 'describe': [220, 815], 'modular': [222], 'algorithm': [223, 817, 1232], 'fitting': [225, 239, 1680], 'their': [229, 1381, 1518], 'generalizations.': [230], 'basic': [232], 'component': [233, 1274, 1279, 1282, 1335], 'scatterplot': [236, 258], 'smoother': [237, 639, 667], 'curves': [241, 654, 1122, 1264], 'great': [248], 'variety': [249], 'functional': [251], 'forms.': [252], 'Suppose': [253], 'have': [256, 376, 973, 1596], 'points': [260, 1140], '(x': [261], 'i': [262, 265, 343, 346, 420, 423, 843, 846, 852], ',': [263, 863, 871], 'y': [264, 274, 299, 313], ')': [266, 854], 'like': [267], 'shown': [269, 1128], 'Fig.': [271, 513, 530, 601, 1130, 1631], '1.': [272], 'Here': [273, 389], 'response': [277, 771, 1058], 'or': [278, 575, 714, 734, 1034], 'outcome': [279], 'variable,': [280, 791, 1532], 'x': [282, 301, 491], 'predictor.': [285], 'We': [286, 814, 1048, 1384], 'wish': [287], 'fit': [289, 310, 457, 518, 682, 868, 1007, 1049, 1192, 1291], 'smooth': [291, 359, 1061, 1092], 'curve': [292, 338, 354, 444, 621, 1295], 'f(x)': [293, 315, 319], 'summarizes': [295, 1190], 'dependence': [297], 'on': [300, 556, 690, 773, 913, 1112, 1135, 1200, 1296, 1434, 1440, 1720], '(see': [302], 'Curve': [303], 'Fitting).': [304], 'More': [305], 'formally,': [306], 'want': [308], '+': [316], 'ε,': [317], 'where': [318, 872], 'specified': [321], 'flexible': [324], 'way,': [325], 'yet': [326], 'required': [327], 'reasonably': [330], 'smooth.': [331], 'If': [332, 898, 1571], 'were': [334, 1144, 1509, 1612, 1623], 'find': [336, 1385], 'simply': [340, 807, 911], 'minimized': [341], '∑[y': [342, 419], '−': [344, 421, 850], 'f(x': [345, 422], ')]2,': [347], 'result': [349], 'would': [350, 356, 1148, 1581, 1595], 'interpolating': [353, 443], 'not': [357, 537, 669, 938, 1378, 1426, 1439, 1510, 1575], 'at': [360, 450, 487, 893, 1141, 1482, 1706], 'all.': [361], 'Notice': [362], '∫f″(x)2': [364, 377], 'dx': [365, 378], 'measures': [366], '“wiggliness”': [368], 'f:': [372], 'f': [375, 436, 545, 891], '0,': [380], 'while': [381, 1299, 1417, 1638], 'produce': [384], 'values': [385, 432, 489, 886], 'larger': [386], 'than': [387, 655], 'zero.': [388], 'λ': [390, 434, 447, 462, 525, 554, 595], 'nonnegative': [393], 'smoothing': [394], 'parameter': [395, 784], 'must': [397, 1504], 'chosen': [399, 1511], 'analyst.': [403], 'It': [404], 'governs': [405], 'trade-off': [407], 'goodness': [410], 'fit*': [412], '(as': [416], 'measured': [417], ')]2)': [424], 'wiggliness': [427], 'function.': [430, 696], 'Larger': [431], 'force': [435], 'smoother.': [439], 'fact': [441, 534], 'corresponds': [445], '0': [449], 'one': [451, 1103, 1147, 1503], 'extreme,': [452], 'straight': [455], 'line': [456, 1189], 'limit': [460], '→': [463], '∞.': [464], 'For': [465, 697, 957, 1101, 1258], 'any': [466, 1043], 'value': [467, 523, 593, 781], 'λ,': [469, 549], 'solution': [471], '1': [473, 514, 531, 602, 849, 1187], 'cubic': [476, 481, 581, 637], 'spline,': [477], 'i.e.,': [478], 'piecewise': [480], 'polynomial': [482, 630, 657], 'pieces': [484], 'joined': [485], 'smoothly': [486], 'set.': [495], 'Fast': [496], 'stable': [498], 'numerical': [499, 588, 1231], 'procedures': [500], 'available': [502, 1685, 1701, 1723], 'computation': [504], 'fitted': [507, 695, 1095, 1376, 1448, 1457], 'curve.': [508], 'right': [510], 'panel': [511], 'shows': [515, 1455], 'cubic-spline': [517], 'data.': [521], 'What': [522], 'did': [526, 933], '?': [532], 'it': [535, 565, 954, 1580], 'convenient': [538], 'express': [540], 'desired': [542], 'smoothness': [543], 'since': [550], 'meaning': [552], 'depends': [555], 'units': [558], 'explanatory': [561], 'variable': [562, 772, 839, 1075, 1081, 1549], 'x.': [563], 'Instead,': [564], 'possible': [567], 'define': [569], '“effective': [571], 'number': [572, 1219], 'parameters”': [574], '“degrees': [576], 'freedom”': [578], 'spline': [582, 638], 'smoother,': [583], 'then': [585], 'search': [589], 'determine': [591, 1561], 'number.': [599], 'chose': [604], 'degrees': [606, 662, 1098, 1221, 1239, 1254], 'freedom': [608, 664, 1223, 1241], 'five.': [611], 'Roughly': [612], 'speaking,': [613], 'means': [615], 'complexity': [618], 'about': [623], 'degree': [633], 'four.': [634], 'However,': [635, 935], '“spreads': [640], 'out”': [641], 'its': [642], 'parameters': [643], 'more': [646, 652, 819, 827], 'even': [647], 'manner,': [648, 908], 'hence': [650], 'allows': [651], 'diverse': [653], 'regression.': [658], 'Note': [659, 1228, 1357], 'need': [668], 'integer.': [672], 'preceding': [674], 'discussion': [675], 'sought': [676], 'minimize': [678], 'least': [680, 757], 'squares': [681, 758], 'subject': [686], 'penalty': [689], 'roughness': [692], 'logistic': [699, 822, 1053, 1430], 'criterion': [709], 'penalized': [711, 715], 'maximum': [712, 716, 732, 735], 'likelihood': [713, 733, 737], 'log': [717, 745], 'partial': [718, 736], 'likelihood.': [719], 'To': [720, 967, 1024, 1086, 1520], 'maximize': [721], 'these,': [722], 'backfitting': [724, 812], 'procedure': [725, 901, 929, 952, 1389], 'conjunction': [729], 'algorithm.': [738, 813], 'usual': [740], 'Newton–Raphson': [741], 'method': [742], 'maximizing': [744], 'likelihoods': [746], 'these': [748], 'can': [750, 942], 'cast': [752], 'iteratively': [755], 'reweighted': [756], 'form.': [759], 'involves': [761], 'repeated': [762], 'weighted': [765, 803, 811, 865, 1288], 'constructed': [770, 790], 'covariates:': [775], 'each': [776, 1109, 1188], 'new': [780, 789, 858, 928], 'estimates': [785, 881], 'process': [794], 'iterated.': [796], 'model,': [801], 'replaced': [808], 'detail': [820], 'below,': [824], 'generality': [828], 'Chap.': [830], '6': [831], '8.': [833], 'Iterate:': [834], 'Construct': [835, 840], 'adjusted': [837, 1370], 'dependent': [838], 'weights': [841, 1485], 'w': [842, 861, 874], 'p': [845, 851], 'old': [847, 853], '(': [848], '.': [855], 'Compute': [856], 'η': [857], 'A': [860, 873, 1599], 'z': [862, 870], 'matrix': [877], 'whose': [878], 'rows': [879], 'represent': [880], 'β0': [883], 'unknown': [889], 'j': [892], 'covariate': [896, 1110], 'values.': [897], 'warming': [900, 951, 1000, 1022, 1084, 1388, 1514, 1552, 1584], 'had': [902], 'been': [903], 'given': [904], 'randomized': [907], 'could': [910], 'focus': [912], 'post-February': [915], '1988': [916, 1676], 'compare': [919], 'survival': [921, 1407, 1673], 'rate': [922], 'those': [924, 931, 1629], 'who': [925, 932, 1594], 'received': [926], 'not.': [934, 1646], 'allocation': [936], 'was': [937, 955, 1542, 1559, 1585, 1606, 1636, 1645, 1649], 'random,': [939], 'so': [940], 'only': [943, 1029, 1587], 'try': [944], 'assess': [946], 'effectiveness': [948], 'applied.': [956], '(1983–1988).': [966], 'adjust': [968], 'changes': [970], 'might': [972, 1012], 'occurred': [974], 'over': [975, 1162], 'five-year': [977], 'period,': [978, 1534], 'date': [982, 991, 1009, 1424, 1605], 'operation': [985, 990, 1011, 1037, 1071, 1423, 1515, 1553, 1604, 1640], 'covariate.': [988], 'But': [989], 'strongly': [993, 1391], 'confounded': [994], 'operation,': [1001], 'thus': [1003], 'unduly': [1013], 'remove': [1014], 'some': [1015], 'effect': [1018, 1032, 1420, 1478], 'attributable': [1019], 'procedure.': [1023], 'avoid': [1025], 'this,': [1026, 1522], 'allow': [1028], '(increasing': [1033], 'decreasing)': [1035], 'date.': [1038], 'Hence': [1039, 1663], 'assume': [1041], 'time': [1044], 'trend': [1045], 'linear.': [1047], 'death,': [1059], 'age': [1064, 1124, 1173, 1244, 1266, 1462, 1620], 'weight,': [1066], 'term': [1069], 'date,': [1072], 'categorical': [1074], 'diagnosis,': [1077, 1464], 'operation.': [1085], 'start': [1087], 'algorithm,': [1089], 'four': [1097], 'freedom.': [1100], 'interpretation,': [1102, 1261], 'wants': [1104], 'understand': [1106], 'influence': [1108], 'has': [1111], 'transform': [1115], 'probability': [1118, 1442], 'death.': [1120], 'weight': [1126, 1246, 1268, 1622], '2.': [1131], 'tick': [1133], 'marks': [1134], 'x-axis': [1137], 'indicate': [1138], 'available.': [1145], 'As': [1146, 1488], 'expect,': [1149], 'highest': [1151], 'risk': [1152, 1161, 1179], 'lighter': [1156], 'babies,': [1157], 'decreasing': [1160], '3': [1163, 1454], 'kg.': [1164], 'Somewhat': [1165], 'surprisingly,': [1166], 'there': [1167, 1664], 'seems': [1168, 1665], 'low-risk': [1172], 'around': [1174], '200': [1175], 'days,': [1176], 'higher': [1178], 'younger': [1181], 'older': [1183], 'children.': [1184], 'Table': [1186], 'factor': [1195], 'listed': [1196], 'column': [1199], 'left;': [1202], 'here': [1203, 1495], 'diag1–diag5': [1204], 'five': [1207], 'indicator': [1208], 'variables': [1209], 'six': [1212], 'diagnosis': [1213, 1415, 1634], 'categories,': [1214, 1416], 'df': [1216], 'variable.': [1227], 'unable': [1234], 'achieve': [1236], 'exactly': [1237], '4': [1238], 'effects,': [1247], 'but': [1248, 1438], 'rather': [1249], 'uses': [1250], '3.80': [1251], '3.86': [1253], 'freedom,': [1256], 'respectively.': [1257], 'ease': [1259], 'estimated': [1263, 1294, 1319, 1395, 1419], 'decomposed': [1270], 'into': [1271], 'remaining': [1277], '(the': [1280], 'essentially': [1284], 'obtained': [1285], 'least-squares': [1289], 'predictor,': [1298], 'part': [1302, 1687], 'residual).': [1305], 'Then': [1306], 'next': [1308], 'three': [1309], 'columns,': [1310], 'headed': [1311, 1343], 'coefficient,': [1312, 1320, 1326], 'error,': [1314], 'z-score,': [1316], 'report': [1317], 'error': [1323, 1402, 1660], 'normal': [1329], 'score,': [1330], 'respectively,': [1331], 'factor.': [1339], 'last': [1341], 'column,': [1342], 'Nonlinear': [1344], 'p-Value,': [1345], 'gives': [1346], 'p-value': [1348], 'test': [1351], 'nonlinearity': [1353], 'effect.': [1356], 'however': [1358], 'z-scores': [1361], 'factors': [1365], '(e.g.,': [1366], 'treatment)': [1367], 'fully': [1369], 'shapes': [1373], 'curves,': [1377], 'just': [1379], 'parts.': [1383], 'significant,': [1392, 1624, 1637, 1651], 'coefficient': [1396, 1654], '1.43': [1398], '0.45,': [1404], 'indicating': [1405], 'benefit.': [1408], 'There': [1409], 'strong': [1411], 'differences': [1412], 'large.': [1427], 'Since': [1428], 'scale': [1437], 'scale,': [1443], 'plot': [1445], 'probabilities': [1449, 1458], 'informative.': [1452], 'Figure': [1453], 'broken': [1459], 'down': [1460], 'concise': [1468], 'summary': [1469], 'findings': [1472], 'study.': [1475], 'beneficial': [1477], 'treatment': [1481, 1565], 'lower': [1484], 'evident.': [1487], 'nonrandomized': [1491], 'studies,': [1492], 'results': [1494, 1611], 'should': [1496], 'interpreted': [1498], 'caution.': [1500], 'particular,': [1502], 'ensure': [1505], 'children': [1508], 'according': [1516], 'prognosis.': [1519], 'investigate': [1521], 'performed': [1524], 'second': [1526], 'dummy': [1531, 1548], 'say': [1533], 'before': [1537], 'versus': [1538], 'after': [1539, 1568, 1674], 'February': [1540, 1569, 1675], '1988,': [1541], 'inserted': [1543], 'place': [1545], 'treatment.': [1554], 'purpose': [1556], 'whether': [1562], 'overall': [1564, 1670], 'strategy': [1566], 'improved': [1567], '1988.': [1570], 'turned': [1573], 'out': [1574], 'case,': [1579], 'imply': [1582], 'patients': [1589], 'good': [1592], 'prognosis,': [1593], 'survived': [1597], 'anyway.': [1598], 'adjustment': [1601], 'included': [1607], 'before.': [1609], 'qualitatively': [1613], 'very': [1614], 'similar': [1615, 1627], 'first': [1618], 'analysis:': [1619], '2;': [1632], 'category': [1635], '(a': [1642], 'effect)': [1644], 'period': [1648], '−1.12': [1656], '0.33.': [1662], 'significant': [1669], 'improvement': [1671], '15.': [1677], 'Software': [1678], 'S/S-PLUS': [1690], 'language': [1692], '1,': [1693], '3,': [1694], 'Fortran': [1697], 'program': [1698], 'called': [1699], 'gamfit': [1700], 'Statlib': [1703], '(in': [1704], 'general/gamfit': [1705], 'ftp': [1707], 'site': [1708], 'lib.stat.cmu.edu),': [1709], 'GAIM': [1714], 'package': [1715], 'MS-DOS': [1717], 'computers': [1718], '(information': [1719], 'authors).': [1726], 'Computer‐Intensive': [1727], 'Statistical': [1728], 'Methods;': [1729], 'Nonparametric': [1730], 'Regression.': [1731]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3014310718', 'counts_by_year': [{'year': 2024, 'cited_by_count': 5}, {'year': 2023, 'cited_by_count': 2}, {'year': 2022, 'cited_by_count': 9}, {'year': 2021, 'cited_by_count': 39}, {'year': 2020, 'cited_by_count': 54}, {'year': 2019, 'cited_by_count': 49}, {'year': 2018, 'cited_by_count': 29}, {'year': 2017, 'cited_by_count': 29}, {'year': 2016, 'cited_by_count': 73}, {'year': 2015, 'cited_by_count': 148}, {'year': 2014, 'cited_by_count': 203}, {'year': 2013, 'cited_by_count': 238}, {'year': 2012, 'cited_by_count': 250}], 'updated_date': '2024-12-29T13:15:46.924958', 'created_date': '2020-04-10'}