Abstract:A classical solution where the (scalar) field value moves by an ${\cal O}(1)$ range in Planck units is believed to signal the breakdown of Effective Field Theory (EFT). One heuristic argument for this...A classical solution where the (scalar) field value moves by an ${\cal O}(1)$ range in Planck units is believed to signal the breakdown of Effective Field Theory (EFT). One heuristic argument for this is that such a field will have enough energy to be inside its own Schwarzschild radius, and will result in collapse. In this paper, we consider an inverse problem: what kind of field ranges arise during the gravitational collapse of a classical field? Despite the fact that collapse has been studied for almost a hundred years, most of the discussion is phrased in terms of fluid stress tensors, and not fields. An exception is the scalar collapse made famous by Choptuik. We re-consider Choptuik-like systems, but with the emphasis now on the evolution of the scalar. We give strong evidence that generic spherically symmetric collapse of a massless scalar field leads to super-Planckian field movement. But we also note that in every such supercritical collapse scenario, the large field range is hidden behind an apparent horizon. We also discuss how the familiar perfect fluid models for collapse like Oppenheimer-Snyder and Vaidya should be viewed in light of our results.Read More
Publication Year: 2020
Publication Date: 2020-03-11
Language: en
Type: article
Access and Citation
Cited By Count: 1
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot