Title: Subsonic longitudinal and lateral-directional characteristics of a forward-swept-wing fighter configuration at angles of attack up to 47 deg
Abstract:Subsonic lateral-direction and longitudinal characteristics of a forward-swept-wing fighter configuration were examined in wind-tunnel tests at Mach numbers of 0.2 and 0.5 for angles of attack from -7...Subsonic lateral-direction and longitudinal characteristics of a forward-swept-wing fighter configuration were examined in wind-tunnel tests at Mach numbers of 0.2 and 0.5 for angles of attack from -7 to 47 deg. and over a sidelslip range of +/- 15 deg. The effects of a canard, strakes, vertical tail, and leading- and trailing-edge flaps are examined. The canard and strakes both reduce asymmetric moments and side forces at zero sideslip for angles of attack up to about 30 deg. The canard has a small influence on lateral-directional stability; however, strakes produce a substantial reduction in lateral stability for angles of attack greater than about 20 deg. The vertical tail improves directional stability for angles of attack up to 30 deg. Deflection of the leading-edge flap to 20 deg. at high angles of attack on the strake and canard configurations degrades lateral and directional stability. Deflection of the trailing-edge flap to 20 deg. on the canard configuration generally increases lateral and directional stability at high angles of attack. Leading- and trailing-edge flaps on the wing-body and canard configurations are effective for increased lift only for angles of attack up to about 40 deg. The leading-edge flap remains effective on the strake configuration over the entire angle-of-attack range tested.Read More
Publication Year: 1987
Publication Date: 1987-09-01
Language: en
Type: article
Access and Citation
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot