Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3007764760', 'doi': 'https://doi.org/10.1148/radiol.2020200527', 'title': 'Essentials for Radiologists on COVID-19: An Update—<i>Radiology</i> Scientific Expert Panel', 'display_name': 'Essentials for Radiologists on COVID-19: An Update—<i>Radiology</i> Scientific Expert Panel', 'publication_year': 2020, 'publication_date': '2020-02-27', 'ids': {'openalex': 'https://openalex.org/W3007764760', 'doi': 'https://doi.org/10.1148/radiol.2020200527', 'mag': '3007764760', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/32105562', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/7233379'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1148/radiol.2020200527', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S50280174', 'display_name': 'Radiology', 'issn_l': '0033-8419', 'issn': ['0033-8419', '1527-1315'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315931', 'host_organization_name': 'Radiological Society of North America', 'host_organization_lineage': ['https://openalex.org/P4310315931'], 'host_organization_lineage_names': ['Radiological Society of North America'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'letter', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://europepmc.org/articles/pmc7233379?pdf=render', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5020179930', 'display_name': 'Jeffrey P. Kanne', 'orcid': 'https://orcid.org/0000-0002-4224-8536'}, 'institutions': [{'id': 'https://openalex.org/I135310074', 'display_name': 'University of Wisconsin–Madison', 'ror': 'https://ror.org/01y2jtd41', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I135310074']}], 'countries': ['US'], 'is_corresponding': True, 'raw_author_name': 'Jeffrey P. Kanne', 'raw_affiliation_strings': ['Department of Radiology University of Wisconsin School of Medicine and Public Health Madison WI'], 'affiliations': [{'raw_affiliation_string': 'Department of Radiology University of Wisconsin School of Medicine and Public Health Madison WI', 'institution_ids': ['https://openalex.org/I135310074']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5049321519', 'display_name': 'Brent P. Little', 'orcid': 'https://orcid.org/0000-0001-6657-8241'}, 'institutions': [{'id': 'https://openalex.org/I4210087915', 'display_name': 'Massachusetts General Hospital', 'ror': 'https://ror.org/002pd6e78', 'country_code': 'US', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210087915', 'https://openalex.org/I48633490']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Brent P. Little', 'raw_affiliation_strings': ['Department of Radiology Massachusetts General Hospital Boston MA'], 'affiliations': [{'raw_affiliation_string': 'Department of Radiology Massachusetts General Hospital Boston MA', 'institution_ids': ['https://openalex.org/I4210087915']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5019650350', 'display_name': 'Jonathan H. Chung', 'orcid': 'https://orcid.org/0000-0001-7011-0588'}, 'institutions': [{'id': 'https://openalex.org/I40347166', 'display_name': 'University of Chicago', 'ror': 'https://ror.org/024mw5h28', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I40347166']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Jonathan H. Chung', 'raw_affiliation_strings': ['Department of Radiology University of Chicago Chicago IL'], 'affiliations': [{'raw_affiliation_string': 'Department of Radiology University of Chicago Chicago IL', 'institution_ids': ['https://openalex.org/I40347166']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5057002388', 'display_name': 'Brett M. Elicker', 'orcid': 'https://orcid.org/0000-0001-6188-9622'}, 'institutions': [{'id': 'https://openalex.org/I180670191', 'display_name': 'University of California, San Francisco', 'ror': 'https://ror.org/043mz5j54', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I180670191']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Brett M. Elicker', 'raw_affiliation_strings': ['Department of Radiology University of California San Francisco San Francisco CA'], 'affiliations': [{'raw_affiliation_string': 'Department of Radiology University of California San Francisco San Francisco CA', 'institution_ids': ['https://openalex.org/I180670191']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5010788331', 'display_name': 'Loren H. Ketai', 'orcid': 'https://orcid.org/0000-0001-7833-8667'}, 'institutions': [{'id': 'https://openalex.org/I169521973', 'display_name': 'University of New Mexico', 'ror': 'https://ror.org/05fs6jp91', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I169521973']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Loren H. Ketai', 'raw_affiliation_strings': ['Department of Radiology University of New Mexico Albuquerque'], 'affiliations': [{'raw_affiliation_string': 'Department of Radiology University of New Mexico Albuquerque', 'institution_ids': ['https://openalex.org/I169521973']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 5, 'corresponding_author_ids': ['https://openalex.org/A5020179930'], 'corresponding_institution_ids': ['https://openalex.org/I135310074'], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 675, 'citation_normalized_percentile': {'value': 0.998366, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '296', 'issue': '2', 'first_page': 'E113', 'last_page': 'E114'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9956, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9956, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T11296', 'display_name': 'COVID-19 and healthcare impacts', 'score': 0.9951, 'subfield': {'id': 'https://openalex.org/subfields/2730', 'display_name': 'Oncology'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T11738', 'display_name': 'Ultrasound in Clinical Applications', 'score': 0.9933, 'subfield': {'id': 'https://openalex.org/subfields/2706', 'display_name': 'Critical Care and Intensive Care Medicine'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/2019-20-coronavirus-outbreak', 'display_name': '2019-20 coronavirus outbreak', 'score': 0.41282418}], 'concepts': [{'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.8268032}, {'id': 'https://openalex.org/C3008058167', 'wikidata': 'https://www.wikidata.org/wiki/Q84263196', 'display_name': 'Coronavirus disease 2019 (COVID-19)', 'level': 4, 'score': 0.6016034}, {'id': 'https://openalex.org/C138816342', 'wikidata': 'https://www.wikidata.org/wiki/Q189603', 'display_name': 'Public health', 'level': 2, 'score': 0.5178266}, {'id': 'https://openalex.org/C191935318', 'wikidata': 'https://www.wikidata.org/wiki/Q148', 'display_name': 'China', 'level': 2, 'score': 0.47119662}, {'id': 'https://openalex.org/C512399662', 'wikidata': 'https://www.wikidata.org/wiki/Q3505712', 'display_name': 'Family medicine', 'level': 1, 'score': 0.44983184}, {'id': 'https://openalex.org/C3007834351', 'wikidata': 'https://www.wikidata.org/wiki/Q82069695', 'display_name': 'Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)', 'level': 5, 'score': 0.43699625}, {'id': 'https://openalex.org/C3006700255', 'wikidata': 'https://www.wikidata.org/wiki/Q81068910', 'display_name': '2019-20 coronavirus outbreak', 'level': 3, 'score': 0.41282418}, {'id': 'https://openalex.org/C2989005', 'wikidata': 'https://www.wikidata.org/wiki/Q214963', 'display_name': 'Nuclear medicine', 'level': 1, 'score': 0.34042224}, {'id': 'https://openalex.org/C126838900', 'wikidata': 'https://www.wikidata.org/wiki/Q77604', 'display_name': 'Radiology', 'level': 1, 'score': 0.32594135}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.22310406}, {'id': 'https://openalex.org/C142724271', 'wikidata': 'https://www.wikidata.org/wiki/Q7208', 'display_name': 'Pathology', 'level': 1, 'score': 0.21602851}, {'id': 'https://openalex.org/C2779134260', 'wikidata': 'https://www.wikidata.org/wiki/Q12136', 'display_name': 'Disease', 'level': 2, 'score': 0.15814525}, {'id': 'https://openalex.org/C524204448', 'wikidata': 'https://www.wikidata.org/wiki/Q788926', 'display_name': 'Infectious disease (medical specialty)', 'level': 3, 'score': 0.14622492}, {'id': 'https://openalex.org/C199539241', 'wikidata': 'https://www.wikidata.org/wiki/Q7748', 'display_name': 'Law', 'level': 1, 'score': 0.08439109}, {'id': 'https://openalex.org/C116675565', 'wikidata': 'https://www.wikidata.org/wiki/Q3241045', 'display_name': 'Outbreak', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C17744445', 'wikidata': 'https://www.wikidata.org/wiki/Q36442', 'display_name': 'Political science', 'level': 0, 'score': 0.0}], 'mesh': [{'descriptor_ui': 'D017934', 'descriptor_name': 'Coronavirus', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D018352', 'descriptor_name': 'Coronavirus Infections', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D058873', 'descriptor_name': 'Pandemics', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D011024', 'descriptor_name': 'Pneumonia, Viral', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D000073640', 'descriptor_name': 'Betacoronavirus', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D000086382', 'descriptor_name': 'COVID-19', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006801', 'descriptor_name': 'Humans', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D000072177', 'descriptor_name': 'Radiologists', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D000086402', 'descriptor_name': 'SARS-CoV-2', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D014057', 'descriptor_name': 'Tomography, X-Ray Computed', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 4, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1148/radiol.2020200527', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S50280174', 'display_name': 'Radiology', 'issn_l': '0033-8419', 'issn': ['0033-8419', '1527-1315'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315931', 'host_organization_name': 'Radiological Society of North America', 'host_organization_lineage': ['https://openalex.org/P4310315931'], 'host_organization_lineage_names': ['Radiological Society of North America'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc7233379', 'pdf_url': 'https://europepmc.org/articles/pmc7233379?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233379', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/32105562', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc7233379', 'pdf_url': 'https://europepmc.org/articles/pmc7233379?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'score': 0.45, 'display_name': 'Good health and well-being', 'id': 'https://metadata.un.org/sdg/3'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 9, 'referenced_works': ['https://openalex.org/W3001118548', 'https://openalex.org/W3002108456', 'https://openalex.org/W3004906315', 'https://openalex.org/W3005347918', 'https://openalex.org/W3006642361', 'https://openalex.org/W3006643024', 'https://openalex.org/W3006882119', 'https://openalex.org/W3007497549', 'https://openalex.org/W3008985036'], 'related_works': ['https://openalex.org/W4388896133', 'https://openalex.org/W4382894326', 'https://openalex.org/W4292098121', 'https://openalex.org/W4206669628', 'https://openalex.org/W4205317059', 'https://openalex.org/W3176864053', 'https://openalex.org/W3154141118', 'https://openalex.org/W3036314732', 'https://openalex.org/W3031607536', 'https://openalex.org/W3009669391'], 'abstract_inverted_index': {'HomeRadiologyVol.': [0], '296,': [1], 'No.': [2, 1450, 1480, 1530, 1586, 1733, 1755, 1818, 1907, 1942, 2034, 2102, 2166, 2213, 2256, 2329, 2406, 2441, 2471, 2494, 2524, 2559, 2619, 2645, 2690, 2719, 2760, 2791, 2819, 2853, 2877, 2916, 2951, 2981, 3009, 3028, 3068, 3092, 3119, 3200, 3254, 3326], '2': [3], 'PreviousNext': [4], 'Reviews': [5], 'and': [6, 59, 101, 150, 222, 232, 269, 350, 364, 375, 402, 450, 460, 565, 570, 758, 801, 831, 876, 892, 900, 911, 1118, 1209, 1339, 1427, 1533, 1554, 1571, 1600, 1614, 1623, 1665, 1729, 1766, 1776, 1842, 1898, 1938, 1949, 1982, 2047, 2065, 2125, 2131, 2296, 2333, 2347, 2374, 2410, 2428, 2437, 2482, 2502, 2520, 2542, 2630, 2658, 2664, 2696, 2723, 2777, 2798, 2804, 2815, 2862, 2884, 2891, 2911, 2920, 2947, 2962, 2977, 2988, 3081, 3114, 3122, 3156, 3196, 3222, 3231, 3263, 3329, 3341], 'CommentaryFree': [7], 'AccessEditorialEssentials': [8], 'for': [9, 657, 661, 762, 841, 996, 1040, 1311, 1461, 1488, 1627, 1642, 1740, 1826, 1866, 1946, 1994, 2041, 2081, 2138, 2263, 2308, 2425, 2448, 2499, 2569, 2624, 2704, 2729, 2737, 2766, 2796, 2926, 2945, 2959, 2975, 3204, 3257, 3274, 3303], 'Radiologists': [10], 'on': [11, 354, 389, 472, 711, 1560, 1620, 1639, 1916, 2217, 2466, 3079], 'COVID-19:': [12, 1312, 2356, 3150], 'An': [13, 2367, 2536, 3300], 'Update—Radiology': [14], 'Scientific': [15, 1446, 1476, 1526, 2715], 'Expert': [16], 'PanelJeffrey': [17], 'P.': [18, 22, 33, 37, 118, 121, 1887], 'Kanne': [19, 34, 119], ',': [20, 35, 2301, 2340, 2530], 'Brent': [21, 36, 120], 'Little,': [23, 38], 'Jonathan': [24, 39], 'H.': [25, 31, 40, 46, 123, 127], 'Chung,': [26, 41], 'Brett': [27, 42], 'M.': [28, 43, 125, 1808, 2317], 'Elicker,': [29, 44], 'Loren': [30, 45], 'KetaiJeffrey': [32], 'KetaiAuthor': [47], 'AffiliationsFrom': [48], 'the': [49, 168, 192, 213, 230, 253, 296, 299, 327, 486, 648, 724, 767, 782, 810, 854, 882, 888, 967, 988, 1022, 1033, 1053, 1064, 1418, 1534, 1588, 1827, 1847, 1855, 2129, 2265, 2309, 2353, 2533, 2731, 2738, 2830, 2960, 3126], 'Department': [50, 71, 80, 89, 102], 'of': [51, 54, 57, 72, 81, 84, 90, 93, 103, 106, 164, 184, 194, 209, 229, 235, 240, 279, 302, 320, 362, 383, 396, 421, 431, 458, 463, 476, 489, 526, 539, 545, 555, 568, 584, 606, 626, 635, 640, 685, 702, 708, 727, 753, 756, 769, 779, 784, 817, 822, 839, 857, 884, 890, 905, 913, 939, 946, 958, 963, 970, 976, 990, 993, 1001, 1014, 1016, 1121, 1124, 1151, 1178, 1194, 1212, 1228, 1251, 1259, 1274, 1294, 1308, 1322, 1336, 1351, 1360, 1376, 1387, 1417, 1454, 1485, 1558, 1590, 1654, 1726, 1758, 1829, 1846, 1851, 1895, 2017, 2133, 2140, 2168, 2183, 2209, 2215, 2233, 2259, 2269, 2311, 2344, 2355, 2474, 2505, 2544, 2563, 2682, 2721, 2734, 2740, 2771, 2800, 2829, 2856, 2873, 2908, 2929, 2955, 2964, 2967, 3112, 3128, 3146, 3153, 3168, 3187, 3190, 3210, 3249, 3276, 3321, 3333], 'Radiology,': [52, 73, 82, 91, 104, 1904, 2253, 3006], 'University': [53, 83, 92, 105, 3189], 'Wisconsin': [55], 'School': [56], 'Medicine': [58], 'Public': [60, 187, 2912], 'Health,': [61, 2913], '600': [62], 'Highland': [63], 'Ave,': [64], 'MC': [65], '3252,': [66], 'Madison,': [67], 'WI': [68], '53792-3252': [69], '(J.P.K.);': [70], 'Massachusetts': [74], 'General': [75, 2207], 'Hospital,': [76], 'Boston,': [77], 'Mass': [78], '(B.P.L.);': [79], 'Chicago,': [85, 86], 'Ill': [87], '(J.H.C.);': [88], 'California': [94], 'San': [95, 97], 'Francisco,': [96, 98], 'Calif': [99], '(B.M.E.);': [100], 'New': [107, 2029], 'Mexico,': [108], 'Albuquerque,': [109], 'NM': [110], '(L.H.K.).Address': [111], 'correspondence': [112], 'to': [113, 133, 146, 201, 205, 244, 252, 287, 309, 313, 342, 347, 359, 590, 665, 674, 706, 716, 729, 834, 846, 925, 955, 1021, 1032, 1052, 1063, 1183, 1249, 1314, 1911, 2371, 2650, 2702, 3290], 'J.P.K.': [114, 1018], '(e-mail:': [115], '[email': [116], 'protected]).Jeffrey': [117], 'LittleJonathan': [122], 'ChungBrett': [124], 'ElickerLoren': [126], 'KetaiPublished': [128], 'Online:Feb': [129], '27': [130, 1409], '2020https://doi.org/10.1148/radiol.2020200527MoreSectionsPDF': [131], 'ToolsAdd': [132], 'favoritesCiteTrack': [134], 'Citations': [135], 'ShareShare': [136], 'onFacebookXLinked': [137], 'In': [138, 212, 704, 966], 'Infections': [139, 1215], 'by': [140, 262, 553, 1421], 'coronavirus': [141, 1002, 1127, 1157, 1419, 2741, 3097], 'disease': [142, 1003, 1420, 2500, 2503, 2705, 3098], '2019': [143, 159, 1004, 1125, 1155, 1283, 1345, 1377, 3071], '(COVID-19)': [144, 1097, 1286, 1346], 'continue': [145], 'increase': [147, 847, 893], 'in': [148, 157, 160, 277, 428, 453, 602, 610, 618, 624, 694, 699, 749, 764, 775, 894, 974, 987, 1129, 1158, 1244, 1342, 1347, 1411, 1492, 1760, 1936, 2106, 2170, 2206, 2274, 2331, 2352, 2363, 2408, 2573, 2833, 2887, 2894, 2993, 3012, 3088, 3125, 3141, 3149, 3224, 3237, 3335], 'China': [149, 185], 'worldwide.': [151], 'The': [152, 238, 282, 379, 392, 909, 1175, 2753, 3109, 3151], 'betacoronavirus': [153], 'was': [154, 197, 551], 'first': [155, 740], 'reported': [156, 173, 471, 673, 813], 'December': [158, 1977], 'Wuhan,': [161, 1130, 1159, 1220], 'China.': [162, 619, 703, 1160, 1221], 'As': [163], 'February': [165, 1721, 2202, 3349], '24,': [166], '2020,': [167], 'World': [169, 1092, 1103], 'Health': [170, 1093, 1104, 2848], 'Organization': [171], '(WHO)': [172], '78': [174], '811': [175], 'laboratory-confirmed': [176], 'cases,': [177], 'including': [178], 'more': [179, 344, 380, 896], 'than': [180, 324, 333], '2200': [181], 'cases': [182, 196, 459, 755, 778, 1123], 'outside': [183], '(1).': [186], 'health': [188, 850], 'officials': [189], 'had': [190, 528, 644], 'thought': [191], 'rate': [193, 208, 284], 'new': [195, 210, 303, 559, 1909], 'slowing,': [198], 'but': [199, 586, 920], 'changes': [200, 3030, 3332], 'diagnostic': [202, 1452], 'criteria': [203], 'led': [204], 'an': [206, 246, 306, 414, 759, 818, 2443, 3039], 'increased': [207, 226, 348], 'cases.': [211], 'past': [214], 'several': [215], 'weeks,': [216], 'many': [217, 776], 'published': [218], 'studies,': [219], 'case': [220, 223], 'series,': [221], 'reports': [224, 707], 'have': [225, 413, 470, 666, 982], 'our': [227], 'knowledge': [228], 'clinical': [231, 855, 1119], 'radiologic': [233], 'manifestations': [234], 'this': [236, 241], 'infection.': [237, 480], 'purpose': [239], 'summary': [242], 'is': [243, 275, 285, 663, 1036, 1180], 'provide': [245], 'update': [247], 'regarding': [248, 998], 'recent': [249], 'information': [250], 'relevant': [251, 1027, 1047, 1058, 1075, 1080, 1085, 1090], 'radiologist.Most': [254], 'patients': [255, 280, 477, 491, 527, 612, 628, 643, 731, 940, 1152, 1914, 2173, 2275, 2654, 2773], 'with': [256, 265, 433, 478, 691, 732, 738, 798, 853, 871, 887, 930, 942, 1154, 1568, 1821, 1877, 1992, 2136, 2276, 2381, 2841, 2896], 'lower': [257, 794], 'respiratory': [258, 272, 795], 'tract': [259, 796], 'infection': [260, 328, 398, 728, 780, 790, 797, 844, 865, 948], 'caused': [261], 'COVID-19': [263, 397, 479, 662, 686, 757, 789, 843, 864, 947, 964, 991, 1179, 1489, 1559, 1591, 1741, 1852, 1867, 1897, 1913, 1995, 2018, 2043, 2172, 2234, 2379, 2449, 2475, 2506, 2534, 2574, 2626, 2772, 2801, 2842, 2859, 2897, 2930, 2968, 2994, 3013, 3169, 3205, 3258, 3277, 3292, 3304, 3334], 'present': [264, 276, 1023, 1034, 1054, 1065], 'fever,': [266], 'cough,': [267], 'dyspnea,': [268], 'myalgia.': [270], 'Acute': [271], 'distress': [273], 'syndrome': [274], '17%–29%': [278], '(2,3).': [281], 'fatality': [283], 'estimated': [286, 295, 337], 'be': [288, 314, 343, 675, 956], 'approximately': [289], '2.3%.': [290], 'One': [291], 'retrospective': [292, 604], 'study': [293], '(4)': [294], 'R0,': [297], 'or': [298, 408, 425, 436, 440, 466, 516, 519, 560, 579, 697, 771, 807, 932, 943, 973], 'average': [300], 'number': [301, 457, 752, 1177], 'infections': [304], 'from': [305, 338, 494, 504, 613, 866, 1069, 1657, 1743, 1870, 1951, 1997, 2044, 2378, 2452, 2476, 2507, 2655, 2932, 3036, 3279, 3294], 'infected': [307, 941, 1153], 'person': [308], 'a': [310, 429, 437, 454, 603, 683, 739, 750, 792, 984, 1037, 1132, 1455, 2110, 2564, 2647, 2821, 2827, 3338], 'naive': [311], 'population,': [312], '3.28,': [315], 'which': [316], 'exceeds': [317], 'WHO': [318], 'estimates': [319], '1.4–2.5.': [321], 'Values': [322], 'greater': [323], '1.0': [325], 'indicate': [326], 'will': [329], 'likely': [330], 'spread': [331], 'rather': [332], 'diminish.': [334], 'R0': [335], 'values': [336], 'later': [339], 'studies': [340], 'tend': [341], 'reliable': [345], 'due': [346], 'awareness': [349], 'intervention.The': [351], 'varied': [352], 'findings': [353, 385, 388, 395, 498, 576, 601, 646, 734, 774, 826, 873, 962, 981, 1000, 3328], 'chest': [355, 390, 960, 979, 1744, 1831, 1834, 2175, 2270, 2345, 2429, 2508, 2768, 2985], 'radiographs': [356], 'remain': [357], 'difficult': [358], 'interpret': [360], 'because': [361], 'nonstandard': [363], 'vague': [365], 'terminology': [366], 'such': [367], 'as': [368, 676, 678, 809, 848, 1012, 1881, 2826, 3031], '"airspace': [369], 'disease,"': [370], '"pneumonia,"': [371], '"infiltrates,"': [372], '"patchy': [373], 'opacities,"': [374], '"hazy': [376], 'opacities"': [377], '(3,5).': [378], 'straightforward': [381], 'descriptions': [382], 'CT': [384, 394, 474, 497, 506, 534, 575, 608, 620, 712, 763, 773, 814, 840, 879, 961, 980, 999, 1242, 1279, 1310, 1338, 1373, 1490, 1621, 1662, 2048, 2066, 2176, 2348, 2426, 2622, 2659, 2693, 2957, 3296], 'can': [386, 922], 'clarify': [387], 'radiographs.': [391], 'predominant': [393, 404, 530, 803], 'are': [399, 461, 2839], 'bilateral,': [400, 799], 'peripheral,': [401], 'basal': [403], 'ground-glass': [405, 422, 514, 804], 'opacity,': [406, 423, 805], 'consolidation,': [407, 424, 806, 895], 'both': [409, 426, 808], '(6,7).': [410], 'Opacities': [411], 'often': [412], 'extensive': [415, 446, 897], 'geographic': [416], 'distribution.': [417], 'Multiple': [418], 'discrete': [419], 'areas': [420, 975], 'occur': [427, 452], 'subset': [430], 'patients—often': [432], 'round': [434], 'morphology': [435], 'reversed': [438], 'halo': [439], 'atoll': [441], 'sign': [442], '(https://pubs.rsna.org/2019-nCoV#images).': [443], 'Pleural': [444], 'effusion,': [445], 'tiny': [447], 'lung': [448, 510, 521, 531, 546, 549, 562, 709, 823, 885, 898, 907, 928, 1659, 2570, 2656], 'nodules,': [449], 'lymphadenopathy': [451], 'very': [455], 'small': [456], 'suggestive': [462], 'bacterial': [464], 'superinfection': [465], 'another': [467], 'diagnosis.Several': [468], 'investigators': [469], 'short-term': [473], 'follow-up': [475], 'Pan': [481, 1264], 'et': [482, 596, 1115, 1147, 1206, 1239, 1270, 1305, 1333, 1371], 'al': [483, 597], '(7)': [484], 'described': [485], 'temporal': [487], 'evolution': [488, 904], '21': [490], 'who': [492, 944], 'recovered': [493], 'COVID-19.': [495], 'Early-stage': [496], '(0–4': [499], 'days': [500, 578, 632, 830], 'after': [501, 633, 3034, 3096], 'symptom': [502], 'onset)': [503], '24': [505], 'scans': [507, 535, 609, 621, 713, 2273, 2427], 'were': [508, 622], 'no': [509, 587, 772, 1026, 1046, 1057, 1074, 1079, 1084, 1089], 'opacities': [511], '(17%),': [512], 'focal': [513], 'opacity': [515, 522], 'consolidation': [517, 563], '(42%),': [518], 'multifocal': [520], '(42%).': [523], 'Approximately': [524], '50%': [525], 'peripheral': [529, 802], 'opacities.': [532, 547], 'Serial': [533, 878], 'during': [536, 1592], 'middle': [537], 'stages': [538], 'illness': [540], '(5–13': [541], 'days)': [542], 'showed': [543, 581], 'progression': [544, 883], 'Peak': [548], 'involvement': [550, 572], 'characterized': [552], 'development': [554, 889], 'crazy-paving': [556, 891], 'pattern': [557, 821], '(19%),': [558], 'increasing': [561, 760], '(91%),': [564], 'higher': [566, 751, 1181], 'rates': [567], 'bilateral': [569], 'multilobar': [571], '(86%).': [573], 'Late-stage': [574], '(14': [577], 'longer)': [580], 'varying': [582], 'degrees': [583], 'clearing': [585], 'resolution': [588, 931], 'up': [589], 'at': [591, 647, 735, 874], 'least': [592], '26': [593, 1405], 'days.': [594], 'Bernheim': [595, 1233, 1367], '(6)': [598], 'report': [599], 'similar': [600, 872], 'review': [605, 2855, 3340], 'serial': [607], '121': [611], 'four': [614], 'different': [615, 2184], 'medical': [616, 2735], 'centers': [617], 'normal': [623], '20': [625, 1398, 1402], '36': [627, 642], '(56%)': [629], 'within': [630], '0–2': [631], 'onset': [634], 'symptoms,': [636], 'yet': [637], 'only': [638], 'one': [639, 921], 'those': [641], 'negative': [645, 689, 741], 'initial': [649], 'real-time': [650], 'reverse-transcription': [651, 1008], 'polymerase': [652, 1009], 'chain': [653, 1010], 'reaction': [654], '(RT-PCR)': [655], 'test': [656, 660, 692], 'COVID-19.The': [658], 'RT-PCR': [659, 718, 742, 1006, 1340, 2137], 'believed': [664], 'high': [667], 'specificity;': [668], 'however,': [669], 'sensitivity': [670], 'has': [671, 747], 'been': [672], 'low': [677], '60%–70%': [679], '(8,9).': [680], 'Thus,': [681], 'excluding': [682], 'diagnosis': [684, 1491, 1757, 2354, 2504, 2739, 3170], 'requires': [687], 'multiple': [688, 1830], 'tests,': [690], 'kits': [693], 'short': [695], 'supply': [696], 'unavailable': [698], 'some': [700, 2834], 'regions': [701], 'response': [705], 'abnormalities': [710, 886, 914], 'predating': [714], 'conversion': [715], 'positive': [717], 'results,': [719], 'Chinese': [720], 'authorities': [721, 851], 'initially': [722], 'broadened': [723], 'official': [725], 'definition': [726, 746], 'include': [730, 862], 'typical': [733, 816, 903, 959], 'CT,': [736], 'even': [737], 'result.': [743], 'This': [744], 'broader': [745], 'resulted': [748], 'presumptive': [754], 'role': [761, 986, 3152], 'diagnosis.': [765, 859], 'However,': [766], 'presence': [768], 'mild': [770], 'early': [777, 785, 858], 'highlights': [781], 'difficulties': [783], 'detection': [786, 1742, 1828, 2797], '(6,10).In': [787], 'summary,': [788], 'causes': [791], 'severe': [793], 'basal,': [800], 'most': [811], 'common': [812], 'findings—features': [815], 'organizing': [819, 3094], 'pneumonia': [820, 1128, 1656, 3095], 'injury.': [824, 908], 'These': [825], 'peak': [827], 'around': [828], '9–13': [829], 'slowly': [832], 'begin': [833], 'resolve': [835], 'thereafter': [836], '(Figure).The': [837], 'importance': [838], 'detecting': [842], 'continues': [845], 'public': [849], 'grapple': [852], 'complexities': [856], 'Future': [860], 'challenges': [861], 'distinguishing': [863], 'other': [867, 926, 1658, 3232], 'conditions': [868], 'that': [869], 'manifest': [870], 'radiography': [875], 'CT.': [877], 'imaging': [880, 2736, 3331], 'shows': [881], 'involvement,': [899], 'slow': [901], 'resolution—the': [902], 'acute': [906, 927, 1896], 'character': [910], 'extent': [912], 'beyond': [915], '4': [916], 'weeks': [917], 'remains': [918, 949], 'unknown,': [919], 'expect': [923], 'similarities': [924], 'injuries': [929], 'residual': [933], 'scar.': [934], 'Furthermore,': [935], 'detailed': [936], 'pathologic': [937], 'analysis': [938, 2182], 'died': [945], 'unreported.': [950], 'We': [951], 'advise': [952], 'all': [953], 'radiologists': [954, 997], 'aware': [957], '(https://pubs.rsna.org/2019-ncov).': [965], 'appropriate': [968], 'setting': [969], 'patient': [971], 'exposure': [972], 'endemic': [977], 'disease,': [978], 'played': [983], 'key': [985], 'evaluation': [989, 2562], 'infection.Summary': [992], 'essential': [994], 'points': [995], '(COVID-19).': [1005], '=': [1007], 'reaction.Download': [1011], 'PowerPointDisclosures': [1013], 'Conflicts': [1015], 'Interest:': [1017], 'Activities': [1019, 1029, 1050, 1060], 'related': [1020, 1031, 1051, 1062], 'article:': [1024, 1035, 1055, 1066], 'disclosed': [1025, 1045, 1056, 1073, 1078, 1083, 1088], 'relationships.': [1028, 1048, 1059, 1076, 1081, 1086], 'not': [1030, 1061], 'paid': [1038], 'consultant': [1039], 'Parexel': [1041], 'International.': [1042], 'Other': [1043, 1071], 'relationships:': [1044, 1072], 'B.P.L.': [1049], 'receives': [1067], 'royalties': [1068], 'Elsevier.': [1070], 'J.H.C.': [1077], 'B.M.E.': [1082], 'L.H.K.': [1087], 'relationships.References1.': [1091], 'Organization.': [1094], 'Novel': [1095, 1213, 1284, 1378, 2919], 'Coronavirus': [1096, 1214, 1245, 1285, 1343, 1379], 'Situation': [1098], 'Report': [1099, 1350], '34.': [1100], 'Geneva,': [1101], 'Switzerland:': [1102], 'Organization,': [1105], '2020.': [1106], 'Google': [1107, 1139, 1165, 1198, 1231, 1262, 1297, 1325, 1363, 1390], 'Scholar2.': [1108], 'Chen': [1109], 'N,': [1110], 'Zhou': [1111], 'M,': [1112, 1203, 1238, 1366], 'Dong': [1113], 'X,': [1114, 1146, 1236, 1370], 'al.': [1116, 1148, 1207, 1240, 1271, 1306, 1334, 1372], 'Epidemiological': [1117], 'characteristics': [1120], '99': [1122], 'novel': [1126, 1156, 1456, 2692], 'China:': [1131, 1348], 'descriptive': [1133], 'study.': [1134], 'Lancet': [1135, 1161], '2020;395(10223):507–513.': [1136], 'Crossref,': [1137, 1163, 1196, 1230], 'Medline,': [1138, 1164, 1197], 'Scholar3.': [1140], 'Huang': [1141, 1237], 'C,': [1142], 'Wang': [1143], 'Y,': [1144, 1168, 1300], 'Li': [1145], 'Clinical': [1149, 1210, 1903, 2288, 2888, 3113], 'features': [1150, 1664, 1894], '2020;395(10223):497–506.': [1162], 'Scholar4.': [1166], 'Liu': [1167], 'Gayle': [1169], 'AA,': [1170], 'Wilder-Smith': [1171], 'A,': [1172, 1234, 1368], 'Rocklöv': [1173], 'J.': [1174], 'reproductive': [1176], 'compared': [1182], 'SARS': [1184], 'coronavirus.': [1185], 'J': [1186], 'Travel': [1187], 'Med': [1188], '2020': [1189, 1223, 1254, 1289, 1317, 1355, 1382, 1414], 'Feb': [1190, 1224, 1255, 1290, 1318, 1356, 1383, 1393, 1397, 1401, 1404, 1408], '13': [1191, 1217], '[Epub': [1192, 1226, 1257, 1292, 1320, 1358, 1385], 'ahead': [1193, 1227, 1258, 1293, 1321, 1359, 1386], 'print].': [1195, 1229, 1260, 1295, 1323, 1361, 1388], 'Scholar5.': [1199], 'Chang': [1200], 'D,': [1201], 'Lin': [1202], 'Wei': [1204], 'L,': [1205], 'Epidemiologic': [1208], 'Characteristics': [1211], 'Involving': [1216], 'Patients': [1218, 1853, 2895], 'Outside': [1219], 'JAMA': [1222], '7': [1225], 'Scholar6.': [1232], 'Mei': [1235, 1369], 'Chest': [1241, 1278, 1309, 1337, 1561, 1618, 1848, 1871, 1952, 1998, 2045, 2386, 2453, 2477, 2621, 2933, 2956, 3280, 3295, 3310], 'Findings': [1243], 'Disease-19': [1246], '(COVID-19):': [1247], 'Relationship': [1248], 'Duration': [1250], 'Infection.': [1252], 'Radiology': [1253, 1288, 1316, 1354, 1381, 2615], '20:200463': [1256], 'Link,': [1261, 1296, 1324, 1362, 1389], 'Scholar7.': [1263], 'F,': [1265], 'Ye': [1266], 'T,': [1267, 1328], 'Sun': [1268], 'P,': [1269], 'Time': [1272], 'Course': [1273], 'Lung': [1275, 1572, 2020, 2134, 2313], 'Changes': [1276], 'On': [1277], 'During': [1280], 'Recovery': [1281], 'From': [1282, 2019, 3309], 'Pneumonia.': [1287], '13:200370': [1291], 'Scholar8.': [1298], 'Fang': [1299], 'Zhang': [1301], 'H,': [1302, 1332], 'Xie': [1303], 'J,': [1304], 'Sensitivity': [1307, 2130], 'Comparison': [1313], 'RT-PCR.': [1315], '19:200432': [1319], 'Scholar9.': [1326], 'Ai': [1327], 'Yang': [1329], 'Z,': [1330], 'Hou': [1331], 'Correlation': [1335], 'Testing': [1341], 'Disease': [1344, 3070], 'A': [1349, 1668, 2180, 2304, 2357], '1014': [1352], 'Cases.': [1353], '26:200642': [1357], 'Scholar10.': [1364], 'Chung': [1365], 'Imaging': [1374, 1727, 2162, 2625, 3020, 3024], 'Features': [1375], '(2019-nCoV).': [1380], '4:200230': [1384], 'ScholarArticle': [1391], 'HistoryReceived:': [1392], '16': [1394], '2020Revision': [1395, 1399], 'requested:': [1396], 'received:': [1400], '2020Accepted:': [1403], '2020Published': [1406, 1410], 'online:': [1407], 'print:': [1412], 'Aug': [1413], 'FiguresReferencesRelatedDetailsCited': [1415], 'ByAuto-detection': [1416], 'using': [1422, 1595, 1661, 1763, 1833, 1965, 2063, 2174, 2260, 2419, 2661, 2774, 2802, 3171], 'deep': [1423, 1457, 1601, 1822, 1972, 2445, 2565, 2699], 'convolutional': [1424, 1823], 'neural': [1425, 1824], 'networks': [1426, 1825], 'X-ray': [1428, 1849, 1872, 2064, 2346, 2387, 2478, 2509, 2657, 2769, 2934], 'photographsAhmad': [1429], 'MohdAzizHussein,': [1430], 'Abdulrauf': [1431], 'GarbaSharifai,': [1432], 'Osama': [1433], "Moh'dAlia,": [1434], 'LaithAbualigah,': [1435], 'Khaled': [1436], 'H.Almotairi,': [1437], 'Sohaib': [1438], 'K.': [1439, 1924], 'M.Abujayyab,': [1440], 'Amir': [1441, 1714], 'H.Gandomi4': [1442], 'January': [1443, 1473, 1523, 1771, 1810, 1837, 2250, 2285], '2024': [1444, 1474, 1524, 1579, 1610, 1647, 1722, 1772, 1811, 1838, 2203], '|': [1445, 1475, 1525, 1550, 1580, 1611, 1632, 1648, 1723, 1751, 1773, 1812, 1839, 1902, 1933, 1979, 2028, 2098, 2122, 2159, 2204, 2252, 2287, 2300, 2325, 2339, 2361, 2402, 2434, 2464, 2490, 2517, 2529, 2555, 2613, 2641, 2680, 2714, 2752, 2786, 2812, 2847, 2871, 2905, 2942, 2972, 3004, 3017, 3064, 3085, 3108, 3139, 3162, 3184, 3219, 3247, 3318, 3351], 'Reports,': [1447, 1477, 1527, 2716], 'Vol.': [1448, 1478, 1528, 1556, 1584, 1616, 1634, 1652, 1731, 1753, 1778, 1816, 1844, 1905, 1940, 1984, 2032, 2100, 2127, 2164, 2211, 2254, 2292, 2302, 2327, 2341, 2365, 2404, 2439, 2469, 2492, 2522, 2531, 2557, 2617, 2643, 2688, 2717, 2758, 2789, 2817, 2851, 2875, 2914, 2949, 2979, 3007, 3026, 3066, 3090, 3117, 3143, 3164, 3198, 3227, 3252, 3324], '14,': [1449, 1479, 1529], '1Potential': [1451], 'application': [1453], 'learning-': [1458], 'based': [1459, 1638, 1915, 2060, 2421, 2698, 3166], 'approach': [1460], 'COVID-19AlirezaSadeghi,': [1462], 'MahdiehSadeghi,': [1463], 'AliSharifpour,': [1464], 'MahdiFakhar,': [1465], 'ZakariaZakariaei,': [1466], 'MohammadrezaSadeghi,': [1467], 'MojtabaRokni,': [1468], 'AtousaZakariaei,': [1469], 'Elham': [1470], 'SadatBanimostafavi,': [1471], 'FarshidHajati2': [1472], '1"KAIZEN"': [1481], 'method': [1482, 2825], 'realizing': [1483], 'implementation': [1484], 'deep-learning': [1486], 'models': [1487], 'real': [1493], 'world': [1494], 'hospitalsNaokiOkada,': [1495], 'YutakaUmemura,': [1496], 'ShoiShi,': [1497], 'ShusukeInoue,': [1498], 'ShunHonda,': [1499], 'YohsukeMatsuzawa,': [1500], 'YuichiroHirano,': [1501], 'AyanoKikuyama,': [1502], 'MihoYamakawa,': [1503], 'TomokoGyobu,': [1504], 'NaohiroHosomi,': [1505], 'KensukeMinami,': [1506], 'NatsushiroMorita,': [1507], 'AtsushiWatanabe,': [1508], 'HiroyukiYamasaki,': [1509], 'KiyomitsuFukaguchi,': [1510], 'HirokiMaeyama,': [1511], 'KaoriIto,': [1512], 'KenOkamoto,': [1513], 'KouheiHarano,': [1514], 'NaohitoMeguro,': [1515], 'RyoUnita,': [1516], 'ShinichiKoshiba,': [1517], 'TakuroEndo,': [1518], 'TomonoriYamamoto,': [1519], 'TomoyaYamashita,': [1520], 'ToshikazuShinba,': [1521], 'SatoshiFujimi19': [1522], '1Data-set': [1531], 'class-balancing': [1532], 'Convolutional': [1535, 1990], 'Vision': [1536], 'TransformerAndres': [1537], 'F.Escobar-Ortiz,': [1538], 'Maria': [1539, 2587], 'A.Amezquita-Dussan,': [1540], 'Juan': [1541], 'S.Galindo-Sanchez,': [1542], 'JoshPardo-Cabrera,': [1543], 'JuliánHurtado-López,': [1544], 'David': [1545], 'F.Ramirez-Moreno,': [1546], 'Luz': [1547], 'F.Sua-Villegas,': [1548], 'LilianaFernandez-Trujillo2024Jul1': [1549], 'Biomedical': [1551, 2467], 'Signal': [1552], 'Processing': [1553], 'Control,': [1555], '93Classification': [1557], 'X-Ray': [1562, 1953, 2046, 2219, 2454, 3311], 'Images': [1563, 1850, 2220, 2479], 'Using': [1564, 1873, 2480, 3207, 3259], 'Deep': [1565, 1736, 1874, 2305, 3307], 'Learning': [1566, 1737, 1875, 1945, 2079, 2306, 3262, 3272, 3288, 3308], 'Model': [1567, 3289], 'Histogram': [1569], 'Equalization': [1570], 'SegmentationKaranVerma,': [1573], 'GeetaSikka,': [1574], 'AmanSwaraj,': [1575], 'SudeshKumar,': [1576], 'AshokKumar30': [1577], 'March': [1578, 1609, 1646], 'SN': [1581], 'Computer': [1582, 2332, 2409, 3220], 'Science,': [1583], '5,': [1585, 2212], '4Detecting': [1587], 'symptoms': [1589], 'pandemic': [1593, 2108], 'environment': [1594], 'smart': [1596, 2793], 'spectacle': [1597], 'thermal': [1598], 'images': [1599, 1762, 2660, 2770], 'capsule': [1602], 'networksDwarakanathB,': [1603], 'PandimuruganV,': [1604], 'MohandasR,': [1605], 'SambathM,': [1606], 'BaijuB.V,': [1607], 'ChinnasamyA21': [1608], 'Multimedia': [1612, 1774, 1840, 1980, 2123, 2435, 2518], 'Tools': [1613, 1775, 1841, 1981, 2124, 2436, 2519], 'Applications,': [1615, 1777, 1843, 1983, 2126, 2438, 2521, 2816], '323COVID-19': [1617], 'Manifestation': [1619], 'Scan': [1622, 2023, 2067], 'Associated': [1624, 2898], 'Risk': [1625], 'Factors': [1626], 'Developing': [1628], 'Pulmonary': [1629], 'FibrosisNohaBakhsh,': [1630], 'MaiBanjar2024Mar21': [1631], 'Cureus,': [1633], '295Interpretable': [1635], 'vision': [1636], 'transformer': [1637], 'prototype': [1640], 'parts': [1641], 'COVID‐19': [1643, 1655, 3238], 'detectionYangXu,': [1644], 'ZuqiangMeng13': [1645], 'IET': [1649], 'Image': [1650, 1878, 2958], 'Processing,': [1651], '8Differentiation': [1653], 'diseases': [1660, 1832], 'radiomic': [1663], 'machine': [1666], 'learning:': [1667], 'large': [1669], 'multicentric': [1670], 'cohort': [1671], 'studyIsaacShiri,': [1672], 'YazdanSalimi,': [1673], 'AbdollahSaberi,': [1674], 'MasoumehPakbin,': [1675], 'GhasemHajianfar,': [1676], 'Atlas': [1677], 'HaddadiAvval,': [1678], 'AmirhosseinSanaat,': [1679], 'AzadehAkhavanallaf,': [1680], 'ShayanMostafaei,': [1681], 'ZahraMansouri,': [1682], 'DariushAskari,': [1683], 'MohammadrezaGhasemian,': [1684], 'EhsanSharifipour,': [1685], 'SalehSandoughdaran,': [1686], 'AhmadSohrabi,': [1687], 'ElhamSadati,': [1688], 'SomayehLivani,': [1689], 'PooyaIranpour,': [1690], 'ShahriarKolahi,': [1691], 'BardiaKhosravi,': [1692], 'MaziarKhateri,': [1693], 'SalarBijari,': [1694], 'Mohammad': [1695, 1699, 2149, 2400], 'RezaAtashzar,': [1696], 'Sajad': [1697], 'P.Shayesteh,': [1698], 'RezaBabaei,': [1700], 'ElnazJenabi,': [1701], 'MohammadHasanian,': [1702], 'AlirezaShahhamzeh,': [1703], 'Seyed': [1704, 2154, 2282], 'Yaser': [1705], 'ForoghiGhomi,': [1706], 'AbolfazlMozafari,': [1707], 'HesamaddinShirzad‐Aski,': [1708], 'FatemehMovaseghi,': [1709], 'RamaBozorgmehr,': [1710], 'NedaGoharpey,': [1711], 'HamidAbdollahi,': [1712], 'ParhamGeramifar,': [1713], 'RezaRadmard,': [1715], 'HosseinArabi,': [1716], 'KiaraRezaei‐Kalantari,': [1717], 'MehrdadOveisi,': [1718], 'ArmanRahmim,': [1719], 'HabibZaidi1': [1720], 'International': [1724, 2906], 'Journal': [1725, 2681, 2756, 2907, 2944, 2974, 3111, 3248], 'Systems': [1728, 2295], 'Technology,': [1730], '34,': [1732], '2A': [1734, 3201], 'Hybrid': [1735, 2037, 2763], 'CNN': [1738, 2012], 'model': [1739, 1910, 2447, 2765], 'X-raysMohanAbdullah,': [1745], 'Ftsum': [1746], 'berheAbrha,': [1747], 'BeshirKedir,': [1748], 'TakoreTamirat': [1749], 'Tagesse2024Mar1': [1750], 'Heliyon,': [1752], '10,': [1754], '5Automatic': [1756], 'CoV-19': [1759], 'CXR': [1761], 'haar-like': [1764], 'feature': [1765], 'XgBoost': [1767], 'classifierKashifShaheed,': [1768], 'QasiarAbbas,': [1769], 'MunishKumar27': [1770], '24COMPARISON': [1779], 'OF': [1780, 1783], 'CLINICAL': [1781], 'CHARACTERISTICS': [1782], 'PATIENTS': [1784], 'HOSPITALIZED': [1785], 'DUE': [1786], 'TO': [1787], 'SARS-COV-2,': [1788], 'INFLUENZA': [1789], 'AND': [1790], 'RESPIRATORY': [1791], 'SYNCYTIAL': [1792], 'VIRUS': [1793], 'PNEUMONIAGülbaharDARILMAZ': [1794], 'YÜCE,': [1795], 'MatinISKANDAROV,': [1796], 'CemreGÜNDÜZ,': [1797], 'Yaşar': [1798], 'OzanSARAÇOĞLU,': [1799], 'BuğraHATİPOĞLU,': [1800], 'Cemile': [1801], 'CansuALPEREN,': [1802], 'TuğbaYANIK': [1803], 'YALÇIN,': [1804], 'TülinYILDIRIM,': [1805], 'MeriçÇOLAK,': [1806], 'GayeULUBAY,': [1807], 'ŞuleAKÇAY17': [1809], 'Kocatepe': [1813], 'Tıp': [1814], 'Dergisi,': [1815], '25,': [1817], '1Federated': [1819], 'learning': [1820, 2446, 2566, 2663, 2700], 'x-raysHassaanMalik,': [1835], 'TayyabaAnees10': [1836], '91Classification': [1845], 'Through': [1854], 'Mean': [1856], 'Structural': [1857], 'Similarity': [1858], 'IndexMayukhaPal,': [1859], 'Prasanta': [1860, 1890], 'K.Panigrahi30': [1861, 1891], 'November': [1862, 1892, 3245], '2023An': [1863], 'Integrative': [1864], 'Method': [1865], "Patients'": [1868], 'Classification': [1869], 'Network': [1876, 1919, 2059], 'Visibility': [1879], 'Graph': [1880], 'Feature': [1882], 'ExtractorMayukhaPal,': [1883], 'YashTiwari,': [1884], 'T.': [1885], 'VineethReddy,': [1886], 'Sai': [1888], 'RamAditya,': [1889], '2023CT': [1893], 'long-term': [1899], 'follow-upG.L.Bailey,': [1900], 'S.J.Copley2024Jan1': [1901], '79,': [1906], '1A': [1908, 2854], 'detect': [1912, 2651], 'Convolution': [1917], 'Neural': [1918, 2813], 'via': [1920], 'l1': [1921], 'regularizationChrispinJiji,': [1922], 'AnnieBessant,': [1923], 'MartinSagayam,': [1925], 'A.': [1926, 2010], 'AmirAnton': [1927], 'Jone,': [1928], 'HatıraGünerhan,': [1929], 'AlphonseHouwe18': [1930], 'June': [1931], '2023': [1932, 1978, 2027, 2097, 2121, 2251, 2286, 3183], 'Applied': [1934], 'Mathematics': [1935], 'Science': [1937, 2849, 2946, 2976], 'Engineering,': [1939, 2468, 2948, 2978, 3197], '31,': [1941], '1Lightweight': [1943], 'Federated': [1944, 2078], 'COVID-19,': [1947], 'Pneumonia,': [1948], 'TB': [1950], 'ImagesNaresh': [1954], 'KumarTrivedi,': [1955], 'HimaniMaheshwari,': [1956], 'Raj': [1957], 'GaurangTiwari,': [1958], 'Ambuj': [1959], 'KumarAgarwal,': [1960], 'VinayGautam2023Dec29An': [1961], 'efficient': [1962, 2444], 'covid-19': [1963], 'prediction': [1964, 3167], 'Penguin': [1966], 'Pelican': [1967], 'optimization-based': [1968], 'recurrent': [1969], 'dropout-enabled': [1970], 'hybrid': [1971], 'CNN-BILSTM': [1973], 'classifierSangram': [1974], 'SanjayraoDandge,': [1975], 'PonHarshavardhanan27': [1976], '25Explainable': [1985], 'Multiscale': [1986], 'Kernel': [1987], 'Depth-wise': [1988], 'Separable': [1989], 'Framework': [1991, 2040, 2307, 3203], 'Attention': [1993], 'Prediction': [1996, 2924], 'X-rayDanielAddo,': [1999], 'Mugahed': [2000, 2050], 'A.Al-Antari,': [2001], 'ShijieZhou,': [2002, 2052], 'KwabenaSarpong,': [2003, 2053], 'PeterAtandoh,': [2004], 'Edward': [2005], 'MensahAcheampong,': [2006], 'Gladys': [2007], 'WavinyaMuoka,': [2008], 'Radhwan': [2009], 'A.Saleh2023Nov23A': [2011], 'Transfer': [2013, 2223, 3271], 'Learning-Based': [2014], 'Automated': [2015, 2922], 'Diagnosis': [2016, 2062, 2139, 2310, 2473, 3275], 'Computerized': [2021], 'Tomography': [2022, 2882], 'SlicesJaspreetKaur,': [2024], 'PrabhpreetKaur5': [2025], 'October': [2026], 'Generation': [2030], 'Computing,': [2031, 2788], '41,': [2033], '4XVAE-mViT:': [2035], 'Explinable': [2036], 'Artificial': [2038, 2686], 'Intelligence': [2039], 'Predicting': [2042], 'ScansDanielAddo,': [2049], 'A.Al-antari,': [2051], 'ErtanBütün,': [2054], 'MuhammedTalo,': [2055], 'HumamAbuAlkebash,': [2056], 'Chiagoziem': [2057], 'C.Ukwuoma2023Oct26Neural': [2058], 'Covid-19': [2061, 2107], 'ImagesShahad': [2068], 'AhmedSalih,': [2069], 'Sadik': [2070], 'KamelGharghan,': [2071], 'Jinan': [2072], 'FadhilMahdi,': [2073], 'Inas': [2074], 'JawadKadhim2023Oct2A': [2075], 'Fog-Based': [2076], 'Privacy-Preserving': [2077], 'System': [2080, 3256], 'Smart': [2082], 'Healthcare': [2083], 'ApplicationsMaryumButt,': [2084], 'NoshinaTariq,': [2085], 'MuhammadAshraf,': [2086], 'Hatoon': [2087], 'S.Alsagri,': [2088], 'Syed': [2089], 'AtifMoqurrab,': [2090], 'Haya': [2091], 'Abdullah': [2092], 'A.Alhakbani,': [2093], 'Yousef': [2094], 'A.Alduraywish28': [2095], 'September': [2096, 2120], 'Electronics,': [2099], '12,': [2101], '19How': [2103], 'GANs': [2104], 'assist': [2105], 'era:': [2109], 'reviewYahya': [2111], 'Sherif': [2112], 'Solayman': [2113], 'MohamedSaleh,': [2114], 'HamamMokayed,': [2115], 'KonstantinaNikolaidou,': [2116], 'LamaAlkhaled,': [2117], 'Yan': [2118, 3131], 'ChaiHum14': [2119], '296Comparing': [2128], 'Specificity': [2132], 'CT-scan': [2135], 'COVID-19AkramAsghari,': [2141], 'Seyed-HasanAdeli,': [2142], 'MahmoudParham,': [2143], 'MohammadBagherzade,': [2144], 'SajjadAhmadpour,': [2145], 'RasoulShajari,': [2146], 'ReihaneTabarrai,': [2147], 'MasoumehShakeri,': [2148], 'AminHabibi,': [2150], 'AmirJabbari,': [2151], 'SaeedeJafari,': [2152], 'FatemesadatRazavinia,': [2153], 'YaserForoghi': [2155], 'Ghomi,': [2156], 'AliEbrazeh,': [2157], 'JamshidVafaeimanesh2023Apr1': [2158], 'Current': [2160, 3018, 3022, 3086], 'Medical': [2161, 2218, 3019, 3023, 3250], 'Reviews,': [2163, 3025], '19,': [2165, 3027], '4Prediction': [2167], 'mortality': [2169], 'adult': [2171], 'severity': [2177, 2349, 2450], 'scoring': [2178, 2350], 'systems:': [2179], 'comparative': [2181, 3041], 'scoresDidier': [2185], 'NdyanaboNdabahweje,': [2186], 'OlivierMukuku,': [2187], 'Charles': [2188], 'KangitsiKahindo,': [2189], 'Michel': [2190], 'LeloTshikwela,': [2191], 'Gertrude': [2192], 'LuyeyeMvila,': [2193], 'Antoine': [2194], 'MoluaAundu,': [2195], 'Jean': [2196], 'TshibolaMukaya,': [2197], 'Stanis': [2198], 'OkitotshoWembonyama,': [2199], 'Zacharie': [2200], 'KibendelwaTsongo22': [2201], 'Advances': [2205], 'Practice': [2208], 'Medicine,': [2210, 2364, 3116], '1Recognition': [2214], 'Tuberculosis': [2216], 'Utilizing': [2221, 2385], 'MobileNet': [2222], 'LearningSheikh': [2224], 'ImtiazHossain,': [2225], 'SharminAlam': [2226], 'Nipu,': [2227], 'Md.': [2228, 2393], 'RakibHasan2023Feb2An': [2229], 'Integrated': [2230], 'Radiologic-Pathologic': [2231], 'Understanding': [2232], 'PneumoniaJong': [2235], 'Hyuk': [2236], 'Lee,': [2237], 'Jaemoon': [2238], 'Koh,': [2239], 'Yoon': [2240], 'Kyung': [2241], 'Jeon,': [2242], 'Jin': [2243], 'Mo': [2244], 'Goo,': [2245], 'Soon': [2246], 'Ho': [2247], 'Yoon,': [2248], '17': [2249], '306,': [2255], '2The': [2257], 'feasibility': [2258], 'acoustic': [2261], 'measures': [2262], 'predicting': [2264], 'Total': [2266], 'Opacity': [2267], 'Scores': [2268], 'computed': [2271, 3234], 'tomography': [2272, 3235], 'COVID-19MaralAsiaee,': [2277], 'MandanaNourbakhsh,': [2278], 'AmirVahedian-Azimi,': [2279], 'MohammadZare,': [2280], 'RamezanJafari,': [2281], 'ShahabAtashi,': [2283], 'AbdalsamadKeramatfar2': [2284], 'Linguistics': [2289], '&': [2290, 2684], 'Phonetics,': [2291], '10Smart': [2293], 'Innovation,': [2294], 'TechnologiesJayaSharma,': [2297], 'D.': [2298], 'FranklinVinod2023': [2299], '311LDDNet:': [2303], 'Infectious': [2312], 'DiseasesPrajoyPodder,': [2314], 'Sanchita': [2315], 'RaniDas,': [2316], 'Rubaiyat': [2318], 'HossainMondal,': [2319], 'SubratoBharati,': [2320], 'AzraMaliha,': [2321], 'Md': [2322, 2391, 3215], 'JunayedHasan,': [2323], 'FarzinPiltan2023': [2324], 'Sensors,': [2326], '23,': [2328], '1Communications': [2330], 'Information': [2334], 'ScienceM.': [2335], 'S.Greeshma,': [2336], 'V.': [2337, 3102], 'R.Bindu2023': [2338], '1704The': [2342], 'value': [2343], 'systems': [2351], 'reviewNaif': [2358], 'Ali': [2359], 'A.Majrashi2023': [2360], 'Frontiers': [2362, 3140], '9DTLCx:': [2366], 'Improved': [2368], 'ResNet': [2369], 'Architecture': [2370, 3302], 'Classify': [2372], 'Normal': [2373], 'Conventional': [2375], 'Pneumonia': [2376, 3293], 'Cases': [2377, 3278], 'Instances': [2380], 'Grad-CAM-Based': [2382], 'Superimposed': [2383], 'Visualization': [2384], 'ImagesMd.': [2388], 'Khabir': [2389], 'UddinAhamed,': [2390], 'ManowarulIslam,': [2392], 'AshrafUddin,': [2394, 3216], 'ArnishaAkhter,': [2395], 'Uzzal': [2396], 'KumarAcharjee,': [2397], 'Bikash': [2398], 'KumarPaul,': [2399], 'AliMoni2023': [2401], 'Diagnostics,': [2403], '13,': [2405, 2644, 2718], '3Advances': [2407], 'Electrical': [2411], 'EngineeringMaheswariR.,': [2412], 'PrasannaSundar': [2413], 'Rao,': [2414], 'AzathH.,': [2415], 'Vijanth': [2416], 'S.Asirvadam2023Covid-19': [2417], 'classification': [2418, 2497], 'sigmoid': [2420], 'hyper-parameter': [2422], 'modified': [2423], 'DNN': [2424], 'X-raysBAnilkumar,': [2430], 'KSrividya,': [2431], 'AMary': [2432], 'Sowjanya2023': [2433], '82,': [2440, 2523], '8CoVSeverity-Net:': [2442], 'estimation': [2451], 'imagesSagar': [2455], 'DeepDeb,': [2456], 'Rajib': [2457], 'KumarJha,': [2458], 'RajnishKumar,': [2459], 'Prem': [2460], 'S.Tripathi,': [2461], 'YashTalera,': [2462], 'ManishKumar2023': [2463], 'Research': [2465, 2910], '39,': [2470], '1Computer-Aided': [2472, 3255], 'Hybrid-Features': [2481], 'Random': [2483], 'Forest': [2484], 'ClassifierKashifShaheed,': [2485], 'PiotrSzczuko,': [2486], 'QaisarAbbas,': [2487], 'AyyazHussain,': [2488], 'MubarakAlbathan2023': [2489], 'Healthcare,': [2491], '11,': [2493], '6A': [2495, 2792], 'multi-class': [2496], 'framework': [2498, 2795], 'screening': [2501], 'imagesEbenezerJangam,': [2510], 'Chandra': [2511], 'Sekhara': [2512], 'RaoAnnavarapu,': [2513], 'Aaron': [2514], 'Antonio': [2515], 'DiasBarreto2023': [2516], '10Infectious': [2525], 'DiseasesBahadırErtürk,': [2526], 'ZamirKemal': [2527], 'Ertürk2023': [2528], '18Revisiting': [2532], 'Pandemic:': [2535], 'Insight': [2537], 'into': [2538], 'Long-Term': [2539], 'Post-COVID': [2540], 'Complications': [2541], 'Repurposing': [2543], 'DrugsRajibMajumder,': [2545], 'SanmitraGhosh,': [2546], 'Manoj': [2547], 'K.Singh,': [2548], 'ArpitaDas,': [2549], 'SwagataRoy': [2550], 'Chowdhury,': [2551], 'AbinitSaha,': [2552], 'Rudra': [2553], 'P.Saha2023': [2554], 'COVID,': [2556], '3,': [2558], '4A': [2560, 2691], 'multicenter': [2561], 'software': [2567], '(LungQuant)': [2568], 'parenchyma': [2571], 'characterization': [2572], 'pneumoniaCamillaScapicchio,': [2575], 'AndreaChincarini,': [2576], 'ElenaBallante,': [2577], 'LucaBerta,': [2578], 'EleonoraBicci,': [2579], 'ChandraBortolotto,': [2580], 'FrancescaBrero,': [2581], 'Raffaella': [2582], 'FiammaCabini,': [2583], 'GiuseppeCristofalo,': [2584], 'Salvatore': [2585], 'ClaudioFanni,': [2586], 'EvelinaFantacci,': [2588], 'SilviaFigini,': [2589], 'MassimoGalia,': [2590], 'PietroGemma,': [2591], 'EmanueleGrassedonio,': [2592], 'AlessandroLascialfari,': [2593], 'CristinaLenardi,': [2594], 'AliceLionetti,': [2595], 'FrancescaLizzi,': [2596], 'MaurizioMarrale,': [2597], 'MassimoMidiri,': [2598], 'CosimoNardi,': [2599], 'PiernicolaOliva,': [2600], 'NoemiPerillo,': [2601], 'IanPostuma,': [2602], 'LorenzoPreda,': [2603], 'VieriRastrelli,': [2604], 'FrancescoRizzetto,': [2605], 'NicolaSpina,': [2606], 'CinziaTalamonti,': [2607], 'AlbertoTorresin,': [2608], 'AngeloVanzulli,': [2609], 'FedericaVolpi,': [2610], 'EmanueleNeri,': [2611], 'AlessandraRetico2023': [2612], 'European': [2614, 2754], 'Experimental,': [2616], '7,': [2618], '1Low-Dose': [2620], 'Protocols': [2623], 'Pneumonia:': [2627], 'Technique': [2628], 'Parameters': [2629], 'Radiation': [2631], 'DoseIbrahim': [2632], 'I.Suliman,': [2633], 'Ghada': [2634], 'A.Khouqeer,': [2635], 'Nada': [2636], 'A.Ahmed,': [2637], 'Mohamed': [2638], 'M.Abuzaid,': [2639], 'AbdelmoneimSulieman2023': [2640], 'Life,': [2642], '4COVIDPRO-NET:': [2646], 'prognostic': [2648], 'tool': [2649], 'COVID': [2652], '19': [2653], 'transfer': [2662], 'Q-deformed': [2665], 'entropyVijayR,': [2666], 'AbhishekKumar,': [2667], 'AnkitKumar,': [2668], 'V': [2669, 2673], 'DAshok': [2670], 'Kumar,': [2671], 'RajeshkumarK,': [2672], 'D': [2674], 'AmbethKumar,': [2675], 'Abdul': [2676], 'KhaderJilani': [2677], 'Saudagar,': [2678], 'AbiramiA2023': [2679], 'Experimental': [2683, 3115], 'Theoretical': [2685], 'Intelligence,': [2687], '35,': [2689, 2818], 'image': [2694, 2823], 'de-noising': [2695], 'fusion': [2697], 'network': [2701], 'screen': [2703], '(COVID-19)Sajid': [2706], 'UllahKhan,': [2707], 'ImdadUllah,': [2708], 'NajeebUllah,': [2709], 'SajidShah,': [2710], 'Mohammed': [2711], 'ElAffendi,': [2712], 'BumshikLee2023': [2713], '1Handbook': [2720], 'Green': [2722], 'Sustainable': [2724], 'NanotechnologyManviriRani,': [2725], 'Keshu,': [2726], 'UmaShanker2023Artificial': [2727], 'intelligence': [2728], 'reducing': [2730], 'radiation': [2732], 'burden': [2733], 'diseaseJiaxiHu,': [2742], 'StavroulaMougiakakou,': [2743], 'SongXue,': [2744], 'AliAfshar-Oromieh,': [2745], 'WolfHautz,': [2746], 'AndreasChriste,': [2747], 'RaphaelSznitman,': [2748], 'AxelRominger,': [2749], 'LukasEbner,': [2750], 'KuangyuShi2023': [2751], 'Physical': [2755, 3194], 'Plus,': [2757], '138,': [2759], '5RETRACTED': [2761], 'ARTICLE:': [2762], 'intelligent': [2764], 'classifying': [2767], 'genetic': [2775], 'algorithm': [2776], 'neutrosophic': [2778], 'logicSameh': [2779], 'H.Basha,': [2780], 'Ahmed': [2781], 'M.Anter,': [2782], 'Aboul': [2783], 'EllaHassanien,': [2784], 'AreegAbdalla2023': [2785], 'Soft': [2787], '27,': [2790], 'healthcare': [2794], 'monitoring': [2799], 'IoT': [2803], 'cloud': [2805], 'computingNidalNasser,': [2806], 'QaziEmad-ul-Haq,': [2807], 'MuhammadImran,': [2808], 'AsmaaAli,': [2809], 'ImranRazzak,': [2810], 'AbdulazizAl-Helali2023': [2811], 'Computing': [2814], '19Using': [2820], 'photographic': [2822], 'processing': [2824], 'part': [2828], 'QA': [2831], 'program': [2832], 'radiotherapy': [2835], 'departments': [2836], 'where': [2837], 'CTs': [2838], 'involved': [2840], 'patientsAhadZeinali,': [2843], 'YasharGhareayaghi,': [2844], 'HadiSeyedarabi,': [2845], 'HassanSaberi2023': [2846], 'Monitor,': [2850], '2,': [2852], 'current': [2857], 'effective': [2858], 'testing': [2860], 'methods': [2861], 'quality': [2863], 'controlLijiaCheng,': [2864], 'LiangLan,': [2865], 'MuruganRamalingam,': [2866], 'JianrongHe,': [2867], 'YiminYang,': [2868], 'MinGao,': [2869], 'ZhengShi2023': [2870], 'Archives': [2872], 'Microbiology,': [2874], '205,': [2876], '6Literature': [2878], 'Review—Transthoracic': [2879], 'Echocardiography,': [2880], 'Computed': [2881], 'Angiography,': [2883], 'Their': [2885], 'Value': [2886], 'Decision': [2889], 'Making': [2890], 'Outcome': [2892], 'Predictions': [2893], 'Cardiovascular': [2899], 'ComplicationsJędrzejWarpechowski,': [2900], 'AdamOlichwier,': [2901], 'AleksandraGolonko,': [2902], 'MarcinWarpechowski,': [2903], 'RobertMilewski2023': [2904], 'Environmental': [2909], '20,': [2915], '12Radiologist-Level': [2917], 'Two': [2918], 'Robust': [2921], 'Computer-Aided': [2923], 'Models': [2925], 'Early': [2927], 'Detection': [2928, 2961, 3206, 3305], 'Infection': [2931], 'ImagesMunishKhanna,': [2935], 'AstitwaAgarwal,': [2936], 'Law': [2937], 'KumarSingh,': [2938], 'ShankarThawkar,': [2939], 'AshishKhanna,': [2940], 'DeepakGupta2023': [2941], 'Arabian': [2943, 2973], '48,': [2950, 2980], '8Quantum': [2952], 'Edge': [2953], 'Extraction': [2954], 'Differentiation': [2963], 'Infected': [2965], 'Region': [2966], 'PatientRajibChetia,': [2969], 'Partha': [2970], 'PratimSahu2023': [2971], '8Digital': [2982], 'tomosynthesis': [2983], 'improves': [2984], 'radiograph': [2986], 'accuracy': [2987], 'reduces': [2989], 'microbiological': [2990], 'false': [2991], 'negatives': [2992], 'diagnosisJuana': [2995], 'MaríaPlasencia-Martínez,': [2996], 'AnaMoreno-Pastor,': [2997], 'MarinaLozano-Ros,': [2998], 'CristinaJiménez-Pulido,': [2999], 'IgnacioHerves-Escobedo,': [3000], 'GloriaPérez-Hernández,': [3001], 'José': [3002], 'MaríaGarcía-Santos2023': [3003], 'Emergency': [3005], '30,': [3008], '4Thromboembolic': [3010], 'Disorder': [3011], 'InfectionShawnLee,': [3014], 'JosephGunderson,': [3015], 'RazaMushtaq2023': [3016], 'Formerly': [3021], '14Vascular/epithelial': [3029], 'late': [3032], 'sequelae': [3033], 'recovery': [3035], 'SARS‐COV‐2': [3037], 'infection:': [3038], 'in‐vivo': [3040], 'studyFedericaPezzuto,': [3042], 'FrancescaLunardi,': [3043], 'LucaVedovelli,': [3044], 'Gheorghe': [3045], 'EOlteanu,': [3046], 'FrancescoFortarezza,': [3047], 'AlessandroDe': [3048], 'Pellegrin,': [3049], 'LucaMelan,': [3050], 'EleonoraFaccioli,': [3051], 'ElisaDe': [3052], 'Franceschi,': [3053], 'ChiaraGiraudo,': [3054], 'Claudiadel': [3055], 'Vecchio,': [3056], 'SerenaMarinello,': [3057], 'GiuliaPasello,': [3058], 'DarioGregori,': [3059], 'PaoloNavalesi,': [3060], 'FedericoRea,': [3061], 'MarcoSchiavon,': [3062], 'FiorellaCalabrese2023': [3063], 'Histopathology,': [3065], '83,': [3067], '2Coronavirus': [3069], '(COVID‐19)Brian': [3072], 'P.Pogatchnik,': [3073], 'WakanaMurakami,': [3074], 'ShabnamMortazavi2023Lung': [3075], 'ultrasound': [3076], 'monitoring:': [3077], 'impact': [3078], 'economics': [3080], 'outcomesGianmariaCammarota,': [3082], 'LuigiVetrugno,': [3083], 'FedericoLonghini2023': [3084], 'Opinion': [3087], 'Anaesthesiology,': [3089], '36,': [3091], '2Secondary': [3093], '(literature': [3099], 'review)L.': [3100], 'S.Gofman,': [3101], 'P.Shendrikov,': [3103], 'E.': [3104, 3106], 'Y.Murlatova,': [3105], 'D.Bazdyrev2023': [3107], 'Siberian': [3110], '38,': [3118], '2TCM': [3120], '"medicine': [3121], 'food': [3123], 'homology"': [3124], 'management': [3127], 'post-COVID': [3129], 'disordersChester': [3130], 'JieNg,': [3132], 'Hung': [3133], 'HungBun,': [3134], 'YanZhao,': [3135], 'Linda': [3136], 'L.': [3137], 'D.Zhong2023': [3138], 'Immunology,': [3142], '14Emerging': [3144], 'aspects': [3145], 'cytokine': [3147], 'storm': [3148], 'proinflammatory': [3154], 'cytokines': [3155], 'therapeutic': [3157], 'prospectsRenuDharra,': [3158], 'AnilKumar': [3159], 'Sharma,': [3160], 'SonalDatta2023': [3161], 'Cytokine,': [3163], '169ML': [3165], 'statistical': [3172], 'testsŞifaÖZSARI,': [3173], 'Fatma': [3174], 'ZehraORTAK,': [3175], 'Mehmet': [3176], 'SerdarGÜZEL,': [3177], 'Mükerrem': [3178], 'BaharBAŞKIR,': [3179], 'Gazi': [3180], 'ErkanBOSTANCI20': [3181], 'April': [3182], 'Communications': [3185], 'Faculty': [3186], 'Sciences': [3188, 3195], 'Ankara': [3191], 'Series': [3192], 'A2-A3': [3193], '65,': [3199], 'Blockchain-Based': [3202], 'Stacking': [3208], 'Ensemble': [3209, 3261, 3287], 'Pre-Trained': [3211], 'ModelsKashfi': [3212], 'ShormitaKushal,': [3213], 'TanvirAhmed,': [3214], 'Muhammed': [3217], 'NasirUddin2023Jan1': [3218], 'Methods': [3221], 'Programs': [3223], 'Biomedicine': [3225], 'Update,': [3226], '4Association': [3228], 'between': [3229], 'emphysema': [3230], 'pulmonary': [3233], 'patterns': [3236], 'pneumoniaKeHan,': [3239], 'JingWang,': [3240], 'YulinZou,': [3241], 'YuxinZhang,': [3242], 'LinZhou,': [3243], 'YipingYin17': [3244], '2022': [3246], 'Virology,': [3251], '95,': [3253], 'Semi-supervised-based': [3260], 'Reinforcement': [3264], 'LearningMinghuiLiu,': [3265], 'YiYuan,': [3266], 'MeiyiYang,': [3267], 'HongPu,': [3268], 'XiaominWang,': [3269], 'MingLiu2022Dec9A': [3270], 'Approach': [3273], 'Radiography': [3281], 'ImagesAmiya': [3282], 'KumarDash,': [3283], 'PuspanjaliMohapatra,': [3284], 'Niranjan': [3285], 'KumarRay2022Dec1An': [3286], 'Detect': [3291], 'ScanFerdib-Al-Islam,': [3297], 'PintuChandra': [3298], 'Shill2022Oct3COVIDNet:': [3299], 'Automatic': [3301], 'With': [3306], 'ImagesLangHe,': [3312], 'PrayagTiwari,': [3313], 'RuiSu,': [3314], 'XiuyingShi,': [3315], 'PekkaMarttinen,': [3316], 'NeerajKumar2022Jul1': [3317], 'IEEE': [3319], 'Internet': [3320], 'Things': [3322], 'Journal,': [3323], '9,': [3325], '13CT': [3327], 'dynamic': [3330], '2908': [3336], 'patients:': [3337], 'systematic': [3339], 'meta-analysisXiuxiuZhou,': [3342], 'YuPu,': [3343], 'DiZhang,': [3344], 'YiXia,': [3345], 'YuGuan,': [3346], 'ShiyuanLiu,': [3347], 'LiFan25': [3348], '2021': [3350], 'Acta': [3352], 'R': [3353]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3007764760', 'counts_by_year': [{'year': 2024, 'cited_by_count': 30}, {'year': 2023, 'cited_by_count': 51}, {'year': 2022, 'cited_by_count': 88}, {'year': 2021, 'cited_by_count': 229}, {'year': 2020, 'cited_by_count': 275}], 'updated_date': '2024-12-11T04:03:04.154413', 'created_date': '2020-03-06'}