Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W3003901880', 'doi': 'https://doi.org/10.1148/radiol.2020200236', 'title': 'CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia', 'display_name': 'CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia', 'publication_year': 2020, 'publication_date': '2020-01-31', 'ids': {'openalex': 'https://openalex.org/W3003901880', 'doi': 'https://doi.org/10.1148/radiol.2020200236', 'mag': '3003901880', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/32003646', 'pmcid': 'https://www.ncbi.nlm.nih.gov/pmc/articles/7194019'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1148/radiol.2020200236', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S50280174', 'display_name': 'Radiology', 'issn_l': '0033-8419', 'issn': ['0033-8419', '1527-1315'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315931', 'host_organization_name': 'Radiological Society of North America', 'host_organization_lineage': ['https://openalex.org/P4310315931'], 'host_organization_lineage_names': ['Radiological Society of North America'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://europepmc.org/articles/pmc7194019?pdf=render', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5079974353', 'display_name': 'Junqiang Lei', 'orcid': 'https://orcid.org/0000-0003-2530-1646'}, 'institutions': [{'id': 'https://openalex.org/I76214153', 'display_name': 'Lanzhou University', 'ror': 'https://ror.org/01mkqqe32', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I76214153']}, {'id': 'https://openalex.org/I4210163492', 'display_name': 'First Hospital of Lanzhou University', 'ror': 'https://ror.org/05d2xpa49', 'country_code': 'CN', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210163492']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Junqiang Lei', 'raw_affiliation_strings': ['From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.'], 'affiliations': [{'raw_affiliation_string': 'From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.', 'institution_ids': ['https://openalex.org/I76214153', 'https://openalex.org/I4210163492']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5104003223', 'display_name': 'Junfeng Li', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I4210163492', 'display_name': 'First Hospital of Lanzhou University', 'ror': 'https://ror.org/05d2xpa49', 'country_code': 'CN', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210163492']}, {'id': 'https://openalex.org/I76214153', 'display_name': 'Lanzhou University', 'ror': 'https://ror.org/01mkqqe32', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I76214153']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Junfeng Li', 'raw_affiliation_strings': ['From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.'], 'affiliations': [{'raw_affiliation_string': 'From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.', 'institution_ids': ['https://openalex.org/I4210163492', 'https://openalex.org/I76214153']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100341839', 'display_name': 'Xun� Li', 'orcid': 'https://orcid.org/0000-0001-6862-7692'}, 'institutions': [{'id': 'https://openalex.org/I76214153', 'display_name': 'Lanzhou University', 'ror': 'https://ror.org/01mkqqe32', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I76214153']}, {'id': 'https://openalex.org/I4210163492', 'display_name': 'First Hospital of Lanzhou University', 'ror': 'https://ror.org/05d2xpa49', 'country_code': 'CN', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210163492']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Xun Li', 'raw_affiliation_strings': ['From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.'], 'affiliations': [{'raw_affiliation_string': 'From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.', 'institution_ids': ['https://openalex.org/I76214153', 'https://openalex.org/I4210163492']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5008579080', 'display_name': 'Xiaolong Qi', 'orcid': 'https://orcid.org/0000-0002-3559-5855'}, 'institutions': [{'id': 'https://openalex.org/I76214153', 'display_name': 'Lanzhou University', 'ror': 'https://ror.org/01mkqqe32', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I76214153']}, {'id': 'https://openalex.org/I4210163492', 'display_name': 'First Hospital of Lanzhou University', 'ror': 'https://ror.org/05d2xpa49', 'country_code': 'CN', 'type': 'healthcare', 'lineage': ['https://openalex.org/I4210163492']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Xiaolong Qi', 'raw_affiliation_strings': ['From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.'], 'affiliations': [{'raw_affiliation_string': 'From the 2019-nCoV Investigating and Research Team, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou 730000, China.', 'institution_ids': ['https://openalex.org/I76214153', 'https://openalex.org/I4210163492']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 18.376, 'has_fulltext': False, 'cited_by_count': 729, 'citation_normalized_percentile': {'value': 0.999951, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '295', 'issue': '1', 'first_page': '18', 'last_page': '18'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10041', 'display_name': 'COVID-19 Clinical Research Studies', 'score': 0.9995, 'subfield': {'id': 'https://openalex.org/subfields/2725', 'display_name': 'Infectious Diseases'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10041', 'display_name': 'COVID-19 Clinical Research Studies', 'score': 0.9995, 'subfield': {'id': 'https://openalex.org/subfields/2725', 'display_name': 'Infectious Diseases'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T11775', 'display_name': 'COVID-19 diagnosis using AI', 'score': 0.9991, 'subfield': {'id': 'https://openalex.org/subfields/2741', 'display_name': 'Radiology, Nuclear Medicine and Imaging'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T10118', 'display_name': 'SARS-CoV-2 and COVID-19 Research', 'score': 0.997, 'subfield': {'id': 'https://openalex.org/subfields/2725', 'display_name': 'Infectious Diseases'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/2019-20-coronavirus-outbreak', 'display_name': '2019-20 coronavirus outbreak', 'score': 0.8154199}, {'id': 'https://openalex.org/keywords/betacoronavirus', 'display_name': 'Betacoronavirus', 'score': 0.74854296}, {'id': 'https://openalex.org/keywords/coronavirus-infections', 'display_name': 'Coronavirus Infections', 'score': 0.61618054}, {'id': 'https://openalex.org/keywords/coronavirus', 'display_name': 'Coronavirus', 'score': 0.55948114}], 'concepts': [{'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.95989215}, {'id': 'https://openalex.org/C3008058167', 'wikidata': 'https://www.wikidata.org/wiki/Q84263196', 'display_name': 'Coronavirus disease 2019 (COVID-19)', 'level': 4, 'score': 0.87409306}, {'id': 'https://openalex.org/C3007834351', 'wikidata': 'https://www.wikidata.org/wiki/Q82069695', 'display_name': 'Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)', 'level': 5, 'score': 0.8285867}, {'id': 'https://openalex.org/C3006700255', 'wikidata': 'https://www.wikidata.org/wiki/Q81068910', 'display_name': '2019-20 coronavirus outbreak', 'level': 3, 'score': 0.8154199}, {'id': 'https://openalex.org/C2777914695', 'wikidata': 'https://www.wikidata.org/wiki/Q12192', 'display_name': 'Pneumonia', 'level': 2, 'score': 0.79541236}, {'id': 'https://openalex.org/C2778137277', 'wikidata': 'https://www.wikidata.org/wiki/Q16532287', 'display_name': 'Betacoronavirus', 'level': 5, 'score': 0.74854296}, {'id': 'https://openalex.org/C2909376813', 'wikidata': 'https://www.wikidata.org/wiki/Q57751738', 'display_name': 'Coronavirus Infections', 'level': 5, 'score': 0.61618054}, {'id': 'https://openalex.org/C2777648638', 'wikidata': 'https://www.wikidata.org/wiki/Q57751738', 'display_name': 'Coronavirus', 'level': 5, 'score': 0.55948114}, {'id': 'https://openalex.org/C159047783', 'wikidata': 'https://www.wikidata.org/wiki/Q7215', 'display_name': 'Virology', 'level': 1, 'score': 0.48213598}, {'id': 'https://openalex.org/C142724271', 'wikidata': 'https://www.wikidata.org/wiki/Q7208', 'display_name': 'Pathology', 'level': 1, 'score': 0.2024281}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.15098098}, {'id': 'https://openalex.org/C116675565', 'wikidata': 'https://www.wikidata.org/wiki/Q3241045', 'display_name': 'Outbreak', 'level': 2, 'score': 0.054325312}, {'id': 'https://openalex.org/C524204448', 'wikidata': 'https://www.wikidata.org/wiki/Q788926', 'display_name': 'Infectious disease (medical specialty)', 'level': 3, 'score': 0.048959047}, {'id': 'https://openalex.org/C2779134260', 'wikidata': 'https://www.wikidata.org/wiki/Q12136', 'display_name': 'Disease', 'level': 2, 'score': 0.0}], 'mesh': [{'descriptor_ui': 'D018352', 'descriptor_name': 'Coronavirus Infections', 'qualifier_ui': 'Q000000981', 'qualifier_name': 'diagnostic imaging', 'is_major_topic': True}, {'descriptor_ui': 'D008168', 'descriptor_name': 'Lung', 'qualifier_ui': 'Q000000981', 'qualifier_name': 'diagnostic imaging', 'is_major_topic': True}, {'descriptor_ui': 'D011024', 'descriptor_name': 'Pneumonia, Viral', 'qualifier_ui': 'Q000000981', 'qualifier_name': 'diagnostic imaging', 'is_major_topic': True}, {'descriptor_ui': 'D014057', 'descriptor_name': 'Tomography, X-Ray Computed', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D000328', 'descriptor_name': 'Adult', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D015415', 'descriptor_name': 'Biomarkers', 'qualifier_ui': 'Q000378', 'qualifier_name': 'metabolism', 'is_major_topic': False}, {'descriptor_ui': 'D015415', 'descriptor_name': 'Biomarkers', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D000086382', 'descriptor_name': 'COVID-19', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D002681', 'descriptor_name': 'China', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D018352', 'descriptor_name': 'Coronavirus Infections', 'qualifier_ui': 'Q000150', 'qualifier_name': 'complications', 'is_major_topic': False}, {'descriptor_ui': 'D018352', 'descriptor_name': 'Coronavirus Infections', 'qualifier_ui': 'Q000473', 'qualifier_name': 'pathology', 'is_major_topic': False}, {'descriptor_ui': 'D018352', 'descriptor_name': 'Coronavirus Infections', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D003371', 'descriptor_name': 'Cough', 'qualifier_ui': 'Q000209', 'qualifier_name': 'etiology', 'is_major_topic': False}, {'descriptor_ui': 'D003371', 'descriptor_name': 'Cough', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D005260', 'descriptor_name': 'Female', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D005334', 'descriptor_name': 'Fever', 'qualifier_ui': 'Q000209', 'qualifier_name': 'etiology', 'is_major_topic': False}, {'descriptor_ui': 'D005334', 'descriptor_name': 'Fever', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006801', 'descriptor_name': 'Humans', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D008168', 'descriptor_name': 'Lung', 'qualifier_ui': 'Q000473', 'qualifier_name': 'pathology', 'is_major_topic': False}, {'descriptor_ui': 'D008168', 'descriptor_name': 'Lung', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D011024', 'descriptor_name': 'Pneumonia, Viral', 'qualifier_ui': 'Q000150', 'qualifier_name': 'complications', 'is_major_topic': False}, {'descriptor_ui': 'D011024', 'descriptor_name': 'Pneumonia, Viral', 'qualifier_ui': 'Q000473', 'qualifier_name': 'pathology', 'is_major_topic': False}, {'descriptor_ui': 'D011024', 'descriptor_name': 'Pneumonia, Viral', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D012135', 'descriptor_name': 'Respiratory Sounds', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D014195', 'descriptor_name': 'Travel', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 4, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1148/radiol.2020200236', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S50280174', 'display_name': 'Radiology', 'issn_l': '0033-8419', 'issn': ['0033-8419', '1527-1315'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315931', 'host_organization_name': 'Radiological Society of North America', 'host_organization_lineage': ['https://openalex.org/P4310315931'], 'host_organization_lineage_names': ['Radiological Society of North America'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc7194019', 'pdf_url': 'https://europepmc.org/articles/pmc7194019?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194019', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S2764455111', 'display_name': 'PubMed Central', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/32003646', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://europepmc.org/articles/pmc7194019', 'pdf_url': 'https://europepmc.org/articles/pmc7194019?pdf=render', 'source': {'id': 'https://openalex.org/S4306400806', 'display_name': 'Europe PMC (PubMed Central)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1303153112', 'host_organization_name': 'European Bioinformatics Institute', 'host_organization_lineage': ['https://openalex.org/I1303153112'], 'host_organization_lineage_names': ['European Bioinformatics Institute'], 'type': 'repository'}, 'license': 'other-oa', 'license_id': 'https://openalex.org/licenses/other-oa', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'score': 0.43, 'id': 'https://metadata.un.org/sdg/3', 'display_name': 'Good health and well-being'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 2, 'referenced_works': ['https://openalex.org/W3001897055', 'https://openalex.org/W3002533507'], 'related_works': ['https://openalex.org/W4206419631', 'https://openalex.org/W3087206508', 'https://openalex.org/W3046902141', 'https://openalex.org/W3031607536', 'https://openalex.org/W3020699490', 'https://openalex.org/W3016721635', 'https://openalex.org/W3005417802', 'https://openalex.org/W3004826915', 'https://openalex.org/W3003901880', 'https://openalex.org/W2420168943'], 'abstract_inverted_index': {'HomeRadiologyVol.': [0], '295,': [1], 'No.': [2, 514, 556, 592, 632, 660, 711, 732, 757, 815, 844, 892, 909, 930, 976, 1006, 1054, 1081, 1116, 1134, 1176, 1192, 1218, 1268, 1310, 1374, 1413, 1469, 1494, 1564, 1582, 1605, 1645, 1713, 1736, 1756, 1788, 1864, 1886, 1943, 1975, 2020, 2060, 2083, 2113, 2204, 2240, 2281, 2313, 2349, 2380, 2410, 2446, 2473, 2506, 2556, 2584, 2610, 2678, 2788, 2815, 2834, 2888, 2905, 2934, 2963, 3016, 3044, 3169, 3205, 3241, 3261, 3293, 3381, 3423], '1': [3, 48], 'PreviousNext': [4], 'Reviews': [5], 'and': [6, 39, 88, 129, 160, 186, 242, 305, 332, 551, 562, 608, 614, 627, 655, 676, 716, 743, 763, 787, 822, 840, 926, 936, 984, 1002, 1028, 1059, 1066, 1084, 1120, 1277, 1284, 1302, 1442, 1454, 1487, 1490, 1498, 1517, 1527, 1542, 1551, 1570, 1601, 1640, 1669, 1681, 1730, 1764, 1769, 1795, 1797, 1810, 1825, 1829, 1888, 1920, 1925, 1951, 1970, 1989, 2055, 2167, 2209, 2251, 2293, 2325, 2376, 2392, 2405, 2427, 2458, 2479, 2488, 2516, 2525, 2559, 2563, 2568, 2579, 2589, 2740, 2746, 2769, 2798, 2839, 2869, 2883, 2928, 2938, 2944, 2966, 2993, 3011, 3048, 3080, 3096, 3110, 3119, 3124, 3147, 3152, 3183, 3298, 3337, 3365, 3390, 3433], 'CommentaryFree': [7], 'AccessImages': [8], 'in': [9, 98, 202, 280, 290, 297, 324, 403, 440, 476, 574, 601, 642, 734, 739, 768, 779, 818, 904, 932, 934, 946, 1018, 1093, 1111, 1145, 1182, 1187, 1300, 1336, 1348, 1448, 1496, 1505, 1514, 1525, 1568, 1650, 1679, 1722, 1823, 1895, 1954, 2053, 2079, 2109, 2297, 2422, 2485, 2521, 2541, 2586, 2594, 2649, 2715, 2742, 2771, 2848, 2851, 2872, 2892, 2914, 2920, 3094, 3117, 3128, 3145, 3179, 3212, 3221, 3295, 3318, 3335, 3360, 3431], 'RadiologyCT': [10], 'Imaging': [11, 707, 1085, 1305, 2182, 2196, 2200, 2512], 'of': [12, 45, 86, 90, 103, 133, 219, 235, 247, 256, 301, 309, 328, 336, 342, 354, 362, 364, 417, 459, 522, 538, 549, 571, 594, 625, 653, 678, 685, 760, 771, 790, 838, 897, 944, 987, 1056, 1062, 1087, 1108, 1169, 1178, 1194, 1213, 1220, 1279, 1446, 1485, 1536, 1566, 1584, 1608, 1611, 1617, 1692, 1706, 1739, 1771, 1783, 1841, 1859, 1891, 1918, 1930, 1968, 1978, 1984, 2014, 2042, 2119, 2174, 2183, 2206, 2212, 2243, 2291, 2317, 2373, 2383, 2389, 2451, 2476, 2531, 2539, 2551, 2565, 2576, 2603, 2636, 2646, 2669, 2686, 2704, 2711, 2836, 2908, 3072, 3105, 3199, 3288, 3386, 3397, 3426, 3435], 'the': [13, 36, 80, 118, 211, 220, 226, 233, 245, 262, 298, 325, 343, 355, 674, 740, 769, 785, 832, 895, 1138, 1332, 1349, 1612, 1615, 1618, 1707, 1723, 1772, 1870, 1946, 2043, 2117, 2123, 2181, 2216, 2837, 3103], '2019': [14, 227, 356, 1088, 1198, 1695, 2044, 2126, 2320, 2714], 'Novel': [15, 397, 437, 1089, 1662], 'Coronavirus': [16, 398, 438, 1090, 2124, 2318, 2712], '(2019-nCoV)': [17, 230], 'PneumoniaJunqiang': [18], 'Lei,': [19, 27], 'Junfeng': [20, 28], 'Li,': [21, 23, 29, 31], 'Xun': [22, 30], 'Xiaolong': [24, 32], 'Qi': [25, 33, 63], 'Junqiang': [26], 'Author': [34], 'AffiliationsFrom': [35], '2019-nCoV': [37, 248], 'Investigating': [38], 'Research': [40, 1110], 'Team,': [41], 'The': [42, 151, 340, 2274], 'First': [43], 'Hospital': [44], 'Lanzhou': [46, 52], 'University,': [47], 'Donggang': [49], 'West': [50], 'Rd,': [51], '730000,': [53], 'China.Address': [54], 'correspondence': [55], 'to': [56, 69, 79, 110, 117, 126, 2418, 2455, 2591, 2775, 2969, 3215, 3263], 'X.Q.': [57, 383], '([email': [58], 'protected])Junqiang': [59], 'LeiJunfeng': [60], 'LiXun': [61], 'LiXiaolong': [62], 'Published': [64], 'Online:Jan': [65], '31': [66, 474], '2020https://doi.org/10.1148/radiol.2020200236MoreSectionsPDF': [67], 'ToolsAdd': [68], 'favoritesCiteTrack': [70], 'CitationsPermissionsReprints': [71], 'ShareShare': [72], 'onFacebookXLinked': [73], 'In': [74], 'A': [75, 396, 436, 611, 773, 794, 1096, 1148, 1352, 1384, 1661, 2099, 2257, 2482, 2721, 2756, 3131, 3218], '33-year-old': [76, 282], 'woman': [77], 'presented': [78], 'hospital': [81], 'with': [82, 259, 267, 401, 524, 606, 681, 918, 948, 1010, 1069, 1423, 1742, 1843, 1957, 1997, 2215, 2254, 2386, 2425, 2543, 2717, 2917, 3107, 3269], 'a': [83, 281, 828, 913, 958, 1142, 1221, 1451, 1593, 1743, 1848, 2001, 2322, 2894, 3394], '5-day': [84], 'history': [85], 'fever': [87], 'cough': [89], 'unknown': [91], 'cause.': [92], 'She': [93], 'indicated': [94], 'that': [95, 207], 'she': [96], 'worked': [97], 'Wuhan,': [99], 'China': [100, 441, 2716], '(the': [101], 'center': [102], 'novel': [104, 228, 357, 533, 1222, 2045], 'coronavirus': [105, 229, 358, 1196, 1693, 1842, 2046], 'outbreak)': [106], 'but': [107], 'had': [108], 'traveled': [109], 'Lanzhou,': [111], 'China,': [112, 404], '6': [113], 'days': [114, 255, 317], 'before': [115], 'presentation': [116], 'hospital.At': [119], 'admission,': [120], 'her': [121], 'body': [122], 'temperature': [123], 'was': [124, 223, 250, 264], 'elevated': [125, 165], '39.0°C': [127], '(102.2°F)': [128], 'coarse': [130], 'breath': [131], 'sounds': [132], 'both': [134, 203], 'lungs': [135, 204], 'were': [136, 164], 'heard': [137], 'at': [138, 272, 2537], 'auscultation.': [139], 'Laboratory': [140], 'studies': [141], 'showed': [142, 157, 197], 'leucopenia': [143], '(white': [144], 'blood': [145, 153, 166], 'cell': [146, 154], 'count:': [147], '2.91': [148], '×': [149], '109/L).': [150], 'white': [152], 'differential': [155], 'count': [156], '70.0%': [158], 'neutrophils': [159], '0.1%': [161], 'eosinophils.': [162], 'There': [163], 'levels': [167], 'for': [168, 225, 445, 486, 519, 639, 665, 683, 792, 981, 1014, 1038, 1229, 1247, 1316, 1380, 1398, 1418, 1587, 1666, 1719, 1767, 1868, 2180, 2247, 2514, 2616, 2642, 2752, 2779, 2792, 2941, 2997, 3102, 3173, 3249, 3272], 'C-reactive': [169], 'protein': [170], '(16.16': [171], 'mg/L;': [172], 'normal': [173, 182, 190], 'range,': [174, 183, 191], '0–10': [175], 'mg/L),': [176], 'erythrocyte': [177], 'sedimentation': [178], 'rate': [179], '(29': [180], 'mm/h;': [181], '<20': [184], 'mm/h),': [185], 'D-dimer': [187], '(580': [188], 'ng/mL;': [189], '500': [192], 'ng/mL).': [193], 'Unenhanced': [194], 'chest': [195, 240, 274, 761, 990, 1539, 1543, 1591, 1686, 1949, 2532], 'CT': [196, 275, 278, 352, 525, 645, 764, 953, 1019, 1043, 1227, 1285, 1325, 1338, 1540, 1948, 2177, 2245, 2393, 2412, 2622, 2754, 2847, 3058, 3074, 3175, 3359, 3392], 'multiple': [198, 287, 3153], 'peripheral': [199, 344], 'ground-glass': [200, 288, 322], 'opacities': [201, 270, 289, 294, 323], '(Figure,': [205, 276], 'A)': [206], 'did': [208], 'not': [209], 'spare': [210], 'subpleural': [212, 348], 'regions.': [213], 'Real-time': [214], 'fluorescence': [215], 'polymerase': [216], 'chain': [217], 'reaction': [218], "patient's": [221], 'sputum': [222], 'positive': [224], 'nucleic': [231], 'acid.On': [232], 'basis': [234], 'epidemiologic': [236], 'characteristics,': [237], 'clinical': [238, 2390, 2967], 'manifestations,': [239], 'images,': [241], 'laboratory': [243, 2567], 'findings,': [244], 'diagnosis': [246, 770, 986, 1231, 1840, 2540, 2710, 3274], 'pneumonia': [249, 951, 1420, 3276], 'made.': [251], 'After': [252], 'receiving': [253], '3': [254, 316], 'treatment,': [257], 'combined': [258], 'interferon': [260], 'inhalation,': [261], 'patient': [263], 'clinically': [265], 'worse': [266], 'progressive': [268, 321], 'pulmonary': [269, 2707], 'found': [271], 'repeat': [273], 'B).Unenhanced': [277], 'images': [279, 1228, 1545, 1846], 'woman.': [283], 'A,': [284], 'Image': [285, 314, 1437], 'shows': [286, 320], 'bilateral': [291], 'lungs.': [292], 'Ground-glass': [293], 'are': [295, 350], 'seen': [296], 'posterior': [299, 307, 326, 334], 'segment': [300, 308, 327, 335], 'right': [302, 329], 'upper': [303, 330], 'lobe': [304, 331], 'apical': [306, 333], 'left': [310, 337], 'superior': [311, 338], 'lobe.': [312, 339], 'B,': [313, 2017], 'obtained': [315], 'after': [318, 2912], 'follow-up': [319, 616], 'bilateralism': [341], 'lung': [345, 3210], 'opacities,': [346], 'without': [347, 609, 1032], 'sparing,': [349], 'common': [351], 'findings': [353, 1441, 1950, 2536, 2842], 'pneumonia.Download': [359], 'as': [360, 568, 1690, 1927], 'PowerPointDisclosures': [361], 'Conflicts': [363], 'Interest:': [365], 'J.': [366, 372, 1404, 2697], 'Lei': [367], 'disclosed': [368, 374, 379, 384], 'no': [369, 375, 380, 385], 'relevant': [370, 376, 381, 386], 'relationships.': [371, 377, 382], 'Li': [373], 'X.L.': [378], 'relationships.References1.': [387], 'Zhu': [388], 'N,': [389, 429], 'Zhang': [390], 'D,': [391, 432], 'Wang': [392], 'W,': [393], 'et': [394], 'al.': [395], 'from': [399, 668, 989, 1042, 1322, 1538, 2259, 2620, 3275, 3383], 'Patients': [400, 1721, 2424, 3182], 'Pneumonia': [402, 523, 666, 2916], '2019.': [405], 'N': [406, 448], 'Engl': [407, 449], 'J': [408, 450], 'Med': [409, 451], '2020': [410, 452, 479, 3256], 'Jan': [411, 453, 466, 469, 473], '24.': [412, 454], 'doi:': [413, 455], '10.1056/NEJMoa2001017.': [414], '[Epub': [415, 457], 'ahead': [416, 458], 'print]': [418, 460], 'Crossref,': [419, 461], 'Medline,': [420, 462], 'Google': [421, 463], 'Scholar2.': [422], 'Munster': [423], 'VJ,': [424], 'Koopmans': [425], 'M,': [426], 'van': [427, 430], 'Doremalen': [428], 'Riel': [431], 'de': [433, 853, 885, 3018, 3025], 'Wit': [434], 'E.': [435], 'Emerging': [439, 1821], '-': [442, 868, 1827, 2235], 'Key': [443, 737], 'Questions': [444], 'Impact': [446], 'Assessment.': [447], '10.1056/NEJMp2000929.': [456], 'ScholarArticle': [464], 'HistoryReceived:': [465], '29': [467, 470], '2020Accepted:': [468], '2020Published': [471, 475], 'online:': [472], 'print:': [477], 'Apr': [478], 'FiguresReferencesRelatedDetailsCited': [480], 'ByMetamaterial-Based': [481], 'Sensors': [482, 1882], 'Loaded': [483], 'Corona-Shaped': [484], 'Resonator': [485], 'COVID-19': [487, 575, 643, 713, 950, 988, 1015, 1040, 1064, 1183, 1230, 1280, 1318, 1333, 1399, 1419, 1447, 1473, 1537, 1569, 1588, 1667, 1720, 1740, 1871, 1893, 1958, 2184, 2213, 2248, 2298, 2384, 2423, 2486, 2544, 2587, 2753, 2793, 2873, 2915, 2972, 2998, 3073, 3106, 3129, 3151, 3174, 3213, 3361, 3387], 'Detection': [488, 2794, 2819, 3432], 'by': [489, 532, 955, 1034, 2219, 2684, 3265, 3400], 'Using': [490, 912, 2795, 2820], 'Microwave': [491], 'TechniquesYadgar': [492], 'I.Abdulkarim,': [493], 'Halgurd': [494], 'N.Awl,': [495], 'Fahmi': [496], 'F.Muhammadsharif,': [497], 'Salah': [498, 1904], 'RazaSaeed,': [499], 'Karzan': [500], 'R.Sidiq,': [501], 'Siyamand': [502], 'S.Khasraw,': [503], 'JianDong,': [504], 'Binay': [505], 'KumarPandey,': [506], 'DigvijayPandey30': [507], 'August': [508], '2023': [509, 544, 752], '|': [510, 545, 588, 623, 650, 704, 724, 753, 777, 811, 836, 881, 902, 922, 940, 971, 999, 1024, 1049, 1075, 1106, 1129, 1167, 1185, 1211, 1239, 1260, 1297, 1368, 1392, 1409, 1435, 1464, 1483, 1510, 1520, 1531, 1559, 1578, 1598, 1637, 1657, 1677, 1704, 1727, 1751, 1780, 1857, 1880, 1915, 1937, 1965, 1981, 2012, 2034, 2050, 2076, 2106, 2165, 2193, 2232, 2273, 2289, 2308, 2343, 2370, 2403, 2442, 2469, 2502, 2548, 2574, 2600, 2633, 2666, 2701, 2737, 2766, 2784, 2808, 2826, 2862, 2881, 2898, 2926, 2957, 2987, 3005, 3040, 3065, 3092, 3115, 3143, 3163, 3197, 3237, 3257, 3285, 3313, 3331, 3342, 3376, 3418], 'Plasmonics,': [511], 'Vol.': [512, 554, 590, 630, 658, 709, 730, 755, 781, 813, 842, 890, 907, 928, 942, 974, 1004, 1030, 1052, 1079, 1114, 1132, 1174, 1190, 1216, 1243, 1266, 1308, 1372, 1394, 1411, 1439, 1467, 1492, 1512, 1522, 1533, 1562, 1580, 1603, 1643, 1659, 1683, 1711, 1734, 1754, 1786, 1862, 1884, 1922, 1941, 1973, 1987, 2018, 2058, 2081, 2111, 2170, 2202, 2238, 2279, 2311, 2347, 2378, 2408, 2444, 2471, 2504, 2554, 2582, 2608, 2638, 2676, 2744, 2773, 2786, 2813, 2832, 2865, 2886, 2903, 2932, 2961, 2990, 3014, 3042, 3067, 3098, 3121, 3149, 3167, 3203, 3239, 3259, 3291, 3315, 3333, 3344, 3379, 3421], '19,': [513, 710, 1942], '2Joint': [515], 'Multi-view': [516], 'Feature': [517], 'Network': [518, 664, 1665], 'Automatic': [520, 3070], 'Diagnosis': [521, 667, 684, 911], 'ImagesHaoCui,': [526], 'FujiaoJu,': [527], 'JianqiangLi21': [528], 'January': [529, 751], '2024A': [530], 'pandemic': [531], 'corona': [534, 1758], 'virus,': [535], 'seventh': [536], 'member': [537], 'human': [539], 'coronavirusSohan': [540], 'APatel,': [541], 'NishithPatel15': [542], 'December': [543, 3255], 'IP': [546], 'International': [547, 651, 1791, 1805, 1818, 1916, 2634, 3286], 'Journal': [548, 624, 652, 1107, 1168, 1484, 1705, 1858, 1917, 1967, 1983, 2013, 2290, 2372, 2550, 2575, 2602, 2635, 2668, 2703, 3198, 3287], 'Comprehensive': [550], 'Advanced': [552], 'Pharmacology,': [553, 1491, 1921], '8,': [555], '4Tissue': [557], 'plasminogen': [558], 'activator': [559], 'receptor': [560], 'ANXA2': [561], 'its': [563, 2220], 'complementary': [564], 'regulator': [565], 'anti-inflammatory': [566], 'ANXA1': [567], 'prognostic': [569], 'indicators': [570], 'inflammatory': [572], 'response': [573, 1991], 'pathogenesisRathika': [576], 'D.Shenoy,': [577], 'Nithin': [578], 'Kuriakose,': [579], 'Vijaykrishnaraj': [580], 'M.,': [581], 'PrakashPatil,': [582], 'Pavan': [583], 'K.Jayaswamy,': [584], 'Dhananjay': [585], 'B.Alagundagi,': [586], 'PraveenkumarShetty2023Sep1': [587], 'Immunobiology,': [589], '228,': [591], '5Impact': [593], 'admission': [595], 'viral': [596], 'load': [597], 'on': [598, 727, 894, 1232, 1263, 1282, 1472, 1793, 1807, 1820, 2116, 2416, 2509, 2681, 2843, 3008, 3052, 3057, 3077], 'respiratory': [599], 'outcomes': [600], 'hospitalized': [602], 'SARS-CoV-2': [603, 1119, 1998, 2647, 2852], 'infected': [604, 1996], 'patients': [605, 947, 1065, 1894, 1956, 2542], 'cancer': [607], 'cancer:': [610], '2-,': [612], '4-': [613], '6-months': [615], 'prospective': [617], 'studyMahaAl-Mozaini,': [618], 'ATM': [619], 'RezaulKarim,': [620], 'Syed': [621], 'S.Islam2023Aug1': [622], 'Infection': [626, 2166, 2619, 2648, 3000], 'Public': [628, 1731, 2276], 'Health,': [629], '16,': [631, 1735], '8Novel': [633], 'Adaptive': [634], 'Histogram': [635], 'Binning-Based': [636], 'Lesion': [637], 'Segmentation': [638, 1321], 'Discerning': [640], 'Severity': [641, 1136, 2414, 2871], 'Chest': [644, 919, 1324, 2176, 2244, 2621, 3427], 'Scan': [646, 1339], 'ImagesS.Nivetha,': [647], 'H.': [648], 'HannahInbarani2023Jun9': [649], 'Sociotechnology': [654], 'Knowledge': [656], 'Development,': [657], '15,': [659, 2280, 2609], '1Multi-view': [661], 'Information': [662, 1830, 2523, 3338], 'Fusion': [663], 'Full': [669], 'Sequence': [670], 'CTsGuanglingQi,': [671], 'LinnaZhao,': [672], 'YuanhangDi2023May26Comparing': [673], 'Sensitivity': [675], 'Specificity': [677], 'Lung': [679, 1319, 1337, 2120, 2909, 2999], 'CT-scan': [680], 'RT-PCR': [682, 2255, 3186], 'COVID-19AkramAsghari,': [686], 'Seyed-HasanAdeli,': [687], 'MahmoudParham,': [688], 'MohammadBagherzade,': [689], 'SajjadAhmadpour,': [690], 'RasoulShajari,': [691], 'ReihaneTabarrai,': [692], 'MasoumehShakeri,': [693], 'Mohammad': [694, 797, 1102], 'AminHabibi,': [695], 'AmirJabbari,': [696], 'SaeedeJafari,': [697], 'FatemesadatRazavinia,': [698], 'Seyed': [699, 1099], 'YaserForoghi': [700], 'Ghomi,': [701], 'AliEbrazeh,': [702], 'JamshidVafaeimanesh2023Apr1': [703], 'Current': [705, 1130, 2051, 2194, 2198, 2958], 'Medical': [706, 1264, 1436, 1709, 2195, 2199, 2511, 2552, 2601], 'Reviews,': [708, 2201], '4Deep-Learning-Based': [712], 'Detection:': [714], 'Challenges': [715, 2217], 'Future': [717, 744], 'DirectionsQurat-ul-AinArshad,': [718], 'Wazir': [719], 'ZadaKhan,': [720], 'FaisalAzam,': [721], 'Muhammad': [722], 'KhurramKhan2023Apr1': [723], 'IEEE': [725, 1261, 1790, 3006], 'Transactions': [726, 1262, 3007], 'Artificial': [728, 1179], 'Intelligence,': [729, 1561], '4,': [731, 891, 1373, 2059], '2Advances': [733, 931], 'Thoracic': [735], 'Imaging:': [736], 'Developments': [738], 'Past': [741], 'Decade': [742], 'DirectionsMizuki': [745], 'Nishino,': [746], 'Mark': [747], 'L.': [748], 'Schiebler,': [749], '10': [750], 'Radiology,': [754, 1410, 3258, 3378, 3420], '306,': [756], '2The': [758], 'value': [759], 'X-ray': [762, 991], 'severity': [765], 'scoring': [766], 'systems': [767], 'COVID-19:': [772, 1613], 'reviewNaif': [774], 'Ali': [775, 2141, 2266, 2878], 'A.Majrashi2023': [776], 'Frontiers': [778], 'Medicine,': [780, 906, 1189, 1682, 1972, 2346, 2885, 2989, 3097, 3120, 3148], '9An': [782], 'Attention': [783], 'towards': [784, 1387], 'Prophylactic': [786, 2682], 'Therapeutic': [788, 2942], 'Options': [789], 'Phytochemicals': [791], 'SARS-CoV-2:': [793, 2893], 'Molecular': [795, 3346], 'InsightShoaibShoaib,': [796], 'AzamAnsari,': [798], 'GeethaKandasamy,': [799], 'RajalakshimiVasudevan,': [800], 'UmmeHani,': [801], 'WaseemChauhan,': [802], 'Maryam': [803], 'S.Alhumaidi,': [804], 'Khadijah': [805], 'A.Altammar,': [806], 'SarfuddinAzmi,': [807], 'WasimAhmad,': [808], 'ShadmaWahab,': [809], 'NajmulIslam2023': [810], 'Molecules,': [812], '28,': [814, 2962, 3422], '2Advanced': [816], 'Methods': [817, 1299, 2739, 2768], 'Biomedical': [819, 1025, 1303], 'Signal': [820, 1026, 1828], 'Processing': [821, 1027, 1831], 'AnalysisAnvita': [823], 'GuptaMalhotra,': [824], 'PranjaliBorkar,': [825], 'RashmiChowdhary,': [826], 'SarmanSingh2023COVID-19:': [827], 'wreak': [829], 'havoc': [830], 'across': [831], 'globeHeenaRehman,': [833], 'Md': [834], 'IftekharAhmad2023': [835], 'Archives': [837], 'Physiology': [839, 1489], 'Biochemistry,': [841], '129,': [843], '1Relación': [845], 'entre': [846], 'el': [847], 'antecedente': [848], 'vacunal': [849], 'y': [850, 888, 3028], 'la': [851, 3022], 'detección': [852], 'anticuerpos': [854], 'IgG/IgM': [855], 'frente': [856], 'al': [857], 'COVID': [858], '–': [859], '19': [860], 'mediante': [861], 'pruebas': [862], 'rápidas': [863], 'en': [864, 3021], 'adultos': [865, 3027], 'mayores,': [866], 'Quevedo': [867], 'EcuadorAngie': [869], 'DayanaVillamar': [870], 'Gavilanes,': [871], 'Mariuxi': [872], 'MagdalenaMoreira': [873], 'Flores,': [874], 'Miryam': [875], 'MaríaLoor': [876], 'Intriago,': [877], 'Alison': [878], 'LourdesQuevedo': [879], 'Heredia2023': [880], 'LATAM': [882], 'Revista': [883], 'Latinoamericana': [884], 'Ciencias': [886], 'Sociales': [887], 'Humanidades,': [889], '1Analysis': [893], 'Treatment': [896, 2913, 2943], 'Hip': [898], 'Fracture': [899], 'under': [900], 'COVID-19春林刘2023': [901], 'Advances': [903, 1186], 'Clinical': [905, 1083, 1109, 1188, 1488, 2210, 2863, 2927], '13,': [908, 975, 1053, 1191, 2555], '02Covid-19': [910], 'Deep': [914, 1312, 1342, 2613, 2799], 'Learning': [915, 1246, 1664, 2614, 2996, 3012], 'Ensemble': [916], 'Model': [917], 'X-Ray': [920, 1283], 'ImagesFuatT黵k2023': [921], 'Computer': [923, 1298, 1506, 2738, 2767, 3200, 3319, 3336], 'Systems': [924, 1516, 2524], 'Science': [925, 1639, 1800], 'Engineering,': [927], '45,': [929, 3204], 'Biochemistry': [933], 'Health': [935, 1497, 1732, 2277, 2406, 2930], 'DiseaseJagdish': [937], 'ChandraJoshi,': [938], 'BhagwatiJoshi2023': [939], ',': [941, 1511, 1521, 1532, 1658, 3253, 3314, 3332, 3343], '22Prediction': [943], 'prognosis': [945, 1953], 'severe': [949, 1195, 1931], 'using': [952, 1226, 1287, 1341, 1546, 1590, 1847], 'score': [954], 'emergency': [956], 'physicians:': [957], 'single-center': [959], 'retrospective': [960, 2002, 3219, 3395], 'studyYasufumiOi,': [961], 'FumihiroOgawa,': [962], 'TsuneoYamashiro,': [963], 'ShoichiroMatsushita,': [964], 'AyakoOguri,': [965], 'ShusukeUtada,': [966], 'NahoMisawa,': [967], 'HiroshiHonzawa,': [968], 'TakeruAbe,': [969], 'IchiroTakeuchi2023': [970], 'Scientific': [972, 1050, 1752], 'Reports,': [973, 1051, 1753, 3166], '1A': [977], 'multi-class': [978], 'classification': [979], 'framework': [980, 1009], 'disease': [982, 985, 1197, 1694, 2319, 3401], 'screening': [983], 'imagesEbenezerJangam,': [992], 'Chandra': [993, 1556, 3112], 'Sekhara': [994, 1557, 3113], 'RaoAnnavarapu,': [995], 'Aaron': [996, 1553], 'Antonio': [997, 1554], 'DiasBarreto2023': [998], 'Multimedia': [1000, 1599], 'Tools': [1001, 1600], 'Applications,': [1003, 1602], '82,': [1005], '10A': [1007], 'teacher–student': [1008], 'Fourier': [1011], 'Transform': [1012], 'augmentation': [1013], 'infection': [1016, 1041, 1281, 1421, 2385], 'segmentation': [1017, 1382, 1422, 1668, 1738, 3071], 'imagesHanChen,': [1020], 'YifanJiang,': [1021], 'HanseokKo,': [1022], 'MurrayLoew2023': [1023], 'Control,': [1029], '79Learning': [1031], 'forgetting': [1033], 'leveraging': [1035], 'transfer': [1036, 1549], 'learning': [1037, 1224, 1289, 1378, 1550, 1850, 2388, 2750], 'detecting': [1039], 'imagesMalligaSubramanian,': [1044], 'Veerappampalayam': [1045], 'EaswaramoorthySathishkumar,': [1046], 'JaehyukCho,': [1047], 'KogilavaniShanmugavadivel2023': [1048], '1Evaluation': [1055], 'cognitive,': [1057], 'mental,': [1058], 'sleep': [1060], 'patterns': [1061], 'post-acute': [1063], 'their': [1067], 'correlation': [1068], 'thorax': [1070], 'CTÖmer': [1071], 'FarukBolattürk,': [1072], 'Akın': [1073], 'CemSoylu2023': [1074], 'Acta': [1076, 1465], 'Neurologica': [1077], 'Belgica,': [1078], '123,': [1080], '3Epidemiological,': [1082], 'Features': [1086], 'Diseases': [1091], '(COVID-19)': [1092, 1760, 2047], 'Southwestern': [1094], 'Iran:': [1095], 'Descriptive': [1097], 'StudyMaryamDastoorpoor,': [1098], 'HamidBorsi,': [1100], 'NargesKhodadadi,': [1101], 'GhasemHanafi,': [1103], 'SusanAhmadzadeh,': [1104], 'JavadZarei2023': [1105], 'Paramedical': [1112], 'Sciences,': [1113, 1986, 2931], '12,': [1115, 1755, 2445, 2472, 2887, 2933], '1Interaction': [1117], 'Between': [1118, 2867], 'Pathogenic': [1121], 'BacteriaParvindokhtFazel,': [1122], 'HamidSedighian,': [1123], 'ElhamBehzadi,': [1124], 'RezaKachuei,': [1125], 'Abbas': [1126], 'AliImani': [1127], 'Fooladi2023': [1128], 'Microbiology,': [1131], '80,': [1133], '7COVID-19': [1135], 'Shifts': [1137], 'Cytokine': [1139, 1172], 'Milieu': [1140], 'Toward': [1141], 'Proinflammatory': [1143], 'State': [1144], 'Egyptian': [1146, 1955, 1966], 'Patients:': [1147, 2460], 'Cross-Sectional': [1149], 'StudyMohamed': [1150], 'L.Salem,': [1151], 'Madonna': [1152], 'M.Eltoukhy,': [1153], 'Rasha': [1154], 'E.Shalaby,': [1155], 'Kamal': [1156], 'M.Okasha,': [1157], 'Mohamed': [1158, 1160, 1162, 1329, 2138, 2151, 2160], 'R.El-Shanshoury,': [1159], 'A.Attia,': [1161], 'S.Hantera,': [1163], 'AsmaaHilal,': [1164], 'Mohammed': [1165, 1909, 2440], 'A.Eid2023': [1166], 'Interferon': [1170], '&': [1171, 1306, 1939, 2673, 2811, 2829], 'Research,': [1173, 1642], '43,': [1175], '6Application': [1177], 'Intelligence': [1180], 'Technology': [1181, 1826, 2404], 'Imaging菲刘2023': [1184], '06Predictors': [1193], 'pneumoniaQinqinYan,': [1199], 'YijunZhang,': [1200, 2396], 'YangLu,': [1201], 'ChenhanDing,': [1202], 'NannanShi,': [1203], 'FengxiangSong,': [1204], 'ChaoHuang,': [1205], 'FengjunLiu,': [1206], 'FeiShan,': [1207], 'ZhiyongZhang,': [1208], 'JayCBuckey,': [1209], 'YuxinShi2023': [1210], 'Radiology': [1212, 1350, 1401, 1969], 'Infectious': [1214, 2233], 'Diseases,': [1215, 1272], '10,': [1217, 2677], '1Application': [1219], 'deep': [1223, 1288, 1377, 1547, 1849, 2749], 'technique': [1225], 'embedded': [1233], 'systemsHasanUlutas,': [1234], 'M.': [1235, 1355], 'EminSahin,': [1236], 'Mucella': [1237], 'OzbayKarakus2023': [1238], 'Alexandria': [1240], 'Engineering': [1241, 1824], 'Journal,': [1242, 2278], '74Federated': [1244], 'Active': [1245], 'Multicenter': [1248], 'Collaborative': [1249], 'Disease': [1250, 2125, 2713, 2870], 'DiagnosisXingWu,': [1251], 'JiePei,': [1252], 'ChengChen,': [1253], 'YiminZhu,': [1254], 'JianjiaWang,': [1255], 'QuanQian,': [1256], 'JianZhang,': [1257], 'QunSun,': [1258], 'YikeGuo2023': [1259], 'Imaging,': [1265, 1371, 1861, 2864], '42,': [1267], '7Emerging': [1269], 'Human': [1270], 'Viral': [1271], 'Volume': [1273, 2171], 'IGeetikaArora,': [1274], 'ShreyaGupta,': [1275], 'DamanSaluja2023Diagnosis': [1276], 'detection': [1278, 1535, 1589, 1768, 2382, 3104], 'scans': [1286], 'based': [1290, 3051, 3076], 'generative': [1291], 'adversarial': [1292], 'networkDeepa': [1293], 's,': [1294], 'Shakila': [1295], 's2023': [1296], 'Biomechanics': [1301], 'Engineering:': [1304], 'Visualization,': [1307], '11,': [1309, 2583], '5A': [1311], 'Learning-based': [1313], '3D': [1314, 1323], 'CNN': [1315], 'Automated': [1317], 'Lesions': [1320], 'ScansAdelKermi,': [1326], 'Hadj': [1327], 'CheikhDjennelbaroud,': [1328], 'TarekKhadir2022Nov29Towards': [1330], 'Understanding': [1331], 'Specific': [1334], 'Patterns': [1335, 2478], 'Images': [1340], 'CTNET': [1343], 'FrameworkN.': [1344], 'ShobhaRani,': [1345], 'Sanjana': [1346], 'RBharadwaj2022Nov25COVID-19': [1347], 'Literature:': [1351], 'Look': [1353], 'BackMark': [1354], 'Hammer,': [1356], 'Constantine': [1357], 'A.': [1358, 3251], 'Raptis,': [1359], 'Travis': [1360], 'S.': [1361, 2626, 2629], 'Henry,': [1362], 'Sanjeev': [1363], 'Bhalla,': [1364], '14': [1365], 'July': [1366, 1481, 3161], '2022': [1367, 1408], 'Radiology:': [1369], 'Cardiothoracic': [1370], '4Effective': [1375], 'multiscale': [1376, 1744], 'model': [1379], 'COVID19': [1381], 'tasks:': [1383], 'further': [1385], 'step': [1386], 'helping': [1388], 'radiologistAbdulQayyum,': [1389], 'AlainLalande,': [1390], 'FabriceMeriaudeau2022Aug1': [1391], 'Neurocomputing,': [1393], '499What': [1395], 'Preparedness': [1396], 'Advice': [1397], 'Did': [1400], 'Departments': [1402], 'Follow?Michael': [1403], 'Tuite,': [1405], '8': [1406], 'March': [1407], '304,': [1412], '1SSA-Net:': [1414], 'Spatial': [1415], 'self-attention': [1416], 'network': [1417, 3050], 'semi-supervised': [1424], 'few-shot': [1425], 'learningXiaoyanWang,': [1426], 'YiwenYuan,': [1427], 'DongyanGuo,': [1428], 'XiaojieHuang,': [1429], 'YingCui,': [1430], 'MingXia,': [1431], 'ZhenhuaWang,': [1432], 'CongBai,': [1433], 'ShengyongChen2022Jul1': [1434], 'Analysis,': [1438], '79CT': [1440], 'dynamic': [1443], 'imaging': [1444, 1689, 2315, 3123], 'changes': [1445], '2908': [1449], 'patients:': [1450, 3362], 'systematic': [1452, 2323, 2757], 'review': [1453, 2324], 'meta-analysisXiuxiuZhou,': [1455], 'YuPu,': [1456], 'DiZhang,': [1457], 'YiXia,': [1458], 'YuGuan,': [1459], 'ShiyuanLiu,': [1460], 'LiFan25': [1461], 'February': [1462], '2021': [1463, 1482, 3162, 3196], 'Radiologica,': [1466], '63,': [1468, 3043], '3A': [1470, 2679], 'dossier': [1471], 'chronicleRufaida,': [1474], 'TariqueMahmood,': [1475], 'IsmailKedwai,': [1476], 'FaroghAhsan,': [1477], 'ArshiyaShamim,': [1478], 'MohammadShariq,': [1479], 'SabaParveen19': [1480], 'Basic': [1486], '33,': [1493, 3015], '1Transcriptomics': [1495], 'DiseaseCristhianna': [1499], 'V.': [1500], 'A.Collares,': [1501], 'Eduardo': [1502], 'A.Donadi2022Lecture': [1503], 'Notes': [1504, 1524, 3317], 'ScienceSumanChaudhary,': [1507], 'WantingYang,': [1508], 'YanQiang2022': [1509], '13374Advances': [1513], 'Intelligent': [1515, 2827, 3289], 'ComputingUttaranRoychowdhury,': [1518], 'MansiSubhedar2022': [1519], '1370Lecture': [1523], 'Networks': [1526, 3010], 'SystemsSangram': [1528], 'SanjayraoDandge,': [1529], 'PonHarshavardhanan2022': [1530], '356Automatic': [1534], 'scan': [1541, 2246, 2535], 'X-Rays': [1544], 'learning,': [1548], 'stackingEbenezerJangam,': [1552], 'DiasBarreto,': [1555], 'RaoAnnavarapu2022': [1558], 'Applied': [1560, 2294], '52,': [1563], '2Dysregulation': [1565], 'immunity': [1567], 'SLESeyyed': [1571], 'SinaHejazian,': [1572], 'Seyyedeh': [1573], 'MinaHejazian,': [1574], 'FarahnooshFarnood,': [1575], 'SimaAbedi': [1576], 'Azar2022': [1577], 'Inflammopharmacology,': [1579], '30,': [1581, 2409], '5Perspective': [1583], 'AI': [1585], 'system': [1586], 'images:': [1592], 'reviewDollyDas,': [1594], 'Saroj': [1595], 'KumarBiswas,': [1596], 'SivajiBandyopadhyay2022': [1597], '81,': [1604], '15A': [1606], 'motley': [1607], 'possible': [1609, 1765], 'therapies': [1610], 'reminiscing': [1614], 'origin': [1616], 'pandemicIshnoorKaur,': [1619], 'TapanBehl,': [1620], 'AayushSehgal,': [1621], 'SukhbirSingh,': [1622], 'NeelamSharma,': [1623], 'VetriselvanSubramanian,': [1624], 'ShivkanyaFuloria,': [1625], 'Neeraj': [1626], 'KumarFuloria,': [1627], 'MahendranSekar,': [1628], 'Hamed': [1629], 'GhalebDailah,': [1630], 'Amal': [1631], 'M.Alsubayiel,': [1632], 'SaurabhBhatia,': [1633], 'AhmedAl-Harrasi,': [1634], 'LotfiAleya,': [1635], 'SimonaBungau2022': [1636], 'Environmental': [1638], 'Pollution': [1641], '29,': [1644], '45Coronavirus': [1646], 'Drug': [1647, 2168, 2236, 2939], 'DiscoverySuchetanaMukherjee,': [1648], 'DwaipayanSinha2022Studies': [1649], 'Natural': [1651], 'Products': [1652], 'ChemistryP.S.Suresh,': [1653], 'S.S.Gupta,': [1654], 'Anmol,': [1655], 'U.Sharma2022': [1656], '74MultiR-Net:': [1660], 'Joint': [1663], 'classificationCheng-FanLi,': [1670], 'Yi-DuoXu,': [1671], 'Xue-HaiDing,': [1672], 'Jun-JuanZhao,': [1673], 'Rui-QiDu,': [1674], 'Li-ZhongWu,': [1675], 'Wen-PingSun2022': [1676], 'Computers': [1678, 3093, 3116, 3144], 'Biology': [1680, 3095, 3118, 3146], '144Serial': [1684], 'quantitative': [1685], 'computed': [1687, 1844, 2533], 'tomography': [1688, 1845, 2534], 'prognosticators': [1691], 'pneumoniaGong-YauLan,': [1696], 'Yuarn-JangLee,': [1697], 'Jen-ChungWu,': [1698], 'Hsin-YiLai,': [1699], 'Hsin-Y-Liu,': [1700], 'Han-ChuanChuang,': [1701], 'KevinLi-Chun': [1702], 'Hsieh2022': [1703], 'Formosan': [1708], 'Association,': [1710], '121,': [1712], '3Predicting': [1714], 'Intensive': [1715], 'Care': [1716, 2672], 'Unit': [1717], 'Admissions': [1718], 'Emergency': [1724, 2674, 3419], 'DepartmentSuphiBahadirli,': [1725], 'ErdemKurt2022': [1726], 'Disaster': [1728], 'Medicine': [1729, 2578], 'Preparedness,': [1733], '4Semantic': [1737], 'lesions': [1741], 'dilated': [1745, 3082], 'convolutional': [1746], 'networkJianxiongZhang,': [1747], 'XuefengDing,': [1748], 'DashaHu,': [1749], 'YumingJiang2022': [1750], '1Novel': [1757], 'virus': [1759], 'pandemic:': [1761], 'current': [1762], 'status': [1763], 'strategies': [1766], 'treatment': [1770], 'diseaseStutiBhagat,': [1773], 'NishaYadav,': [1774], 'JuhiShah,': [1775], 'HarshDave,': [1776], 'ShacheeSwaraj,': [1777], 'ShashankTripathi,': [1778], 'SanjaySingh2022': [1779], 'Expert': [1781], 'Review': [1782, 2680], 'Anti-infective': [1784], 'Therapy,': [1785], '20,': [1787], '102022': [1789], 'Symposium': [1792], 'Antennas': [1794], 'Propagation': [1796], 'USNC-URSI': [1798], 'Radio': [1799], 'Meeting': [1801], '(AP-S/URSI)YinpengWang,': [1802], 'QiangRen20222022': [1803], '6th': [1804], 'Conference': [1806, 1819], 'Computing': [1808], 'Methodologies': [1809], 'Communication': [1811], '(ICCMC)MalligaSubramanian,': [1812], 'Adhithiya': [1813], 'GJ,': [1814], 'GowthamkrishnanS,': [1815], 'DeeptiR20222022': [1816], '10th': [1817], 'Trends': [1822, 2052], '(ICETET-SIP-22)SwatiParaskar,': [1832], 'Arfiya': [1833], 'S.Pathan,': [1834], 'RinaParteki,': [1835], 'Rucha': [1836], 'A.Jichkar,': [1837], 'LaxmanThakare,': [1838], 'TrushnaDeotale2022Intelligent': [1839], 'modelMarkoSarac,': [1851], 'MilosMravik,': [1852], 'DijanaJovanovic,': [1853], 'IvanaStrumberger,': [1854], 'MiodragZivkovic,': [1855], 'NebojsaBacanin2022': [1856], 'Electronic': [1860], '32,': [1863, 2833], '02Review—A': [1865], 'Nanomaterial-Based': [1866], 'Sensor': [1867], 'Detecting': [1869], 'Virus': [1872], 'through': [1873], 'Various': [1874], 'TechniquesTran': [1875], 'Thanh': [1876], 'TamToan,': [1877], 'Do': [1878, 2461], 'MaiNguyen2022': [1879], 'ECS': [1881], 'Plus,': [1883], '1,': [1885], '2Clinical': [1887], 'hematological': [1889], 'characteristics': [1890, 1992], '300': [1892], 'Erbil,': [1896], 'Kurdistan': [1897], 'Region,': [1898], 'IraqRundk': [1899], 'AhmadHwaiz,': [1900], 'Sahar': [1901], 'MohammedZaki': [1902], 'Abdullah,': [1903], 'TofikJalal': [1905], 'Balaky,': [1906], 'Katan': [1907], 'SabirAli,': [1908], 'YousifMerza,': [1910], 'Shakhawan': [1911], 'AssadKhailani,': [1912], 'Nazar': [1913], 'PaulsShabila2022': [1914], 'Immunopathology': [1919], '36Aging,': [1923], 'inflammaging': [1924], 'immunosenescence': [1926], 'risk': [1928], 'factors': [1929], 'COVID-19Anteneh': [1932], 'MehariTizazu,': [1933], 'Hylemariam': [1934], 'MihiretieMengist,': [1935], 'GebreselassieDemeke2022': [1936], 'Immunity': [1938], 'Ageing,': [1940], '1Correlation': [1944], 'between': [1945], 'initial': [1947], 'short-term': [1952], 'pneumoniaMohamed': [1959], 'MohamedHefeda,': [1960], 'Dalia': [1961], 'EzzatElsharawy,': [1962], 'Tamer': [1963], 'MahmoudDawoud2022': [1964], 'Nuclear': [1971], '53,': [1974], '1Ethnological': [1976], 'aspects': [1977, 3385], 'COVID-19PriyaDhiman,': [1979], 'MeenakshiBhatia2022': [1980], 'Brazilian': [1982], 'Pharmaceutical': [1985, 2056, 2705, 2959], '58Clinical': [1988], 'immune': [1990], 'among': [1993], 'vaccinated': [1994], 'persons': [1995], 'delta': [1999], 'variant:': [2000], 'studyCunjinWang,': [2003], 'YongLi,': [2004], 'YuchenPan,': [2005], 'LuojingZhou,': [2006], 'XiZhang,': [2007], 'YanWei,': [2008], 'FangGuo,': [2009], 'YushengShu,': [2010], 'JuGao2022': [2011], 'Zhejiang': [2015], 'University-SCIENCE': [2016], '23,': [2019], '11Derin': [2021], 'öğrenme': [2022], 'mimarilerini': [2023], 'kullanarak': [2024], 'göğüs': [2025], 'BT': [2026], 'görüntülerinden': [2027], 'otomatik': [2028], 'Covid-19': [2029, 2618], 'tahminiVeyselTÜRK,': [2030], 'HaticeÇATAL': [2031], 'REİS,': [2032], 'SerhatKAYA2022': [2033], 'Gümüşhane': [2035], 'Üniversitesi': [2036], 'Fen': [2037], 'Bilimleri': [2038], 'Enstitüsü': [2039], 'DergisiAn': [2040], 'evaluation': [2041], 'diseaseA.G.Nerkar,': [2048], 'PraneetaPawale2022': [2049], 'Pharmacy': [2054], 'Chemistry,': [2057], '3DENTAL': [2061], 'QUALITY': [2062], 'OF': [2063, 2085, 2088, 2091, 2102, 2351, 2362], 'LIFE': [2064], 'SCORE': [2065], 'OHIP-49-RU': [2066], 'IN': [2067, 2096], 'PATIENTS': [2068, 2097], 'WITH': [2069, 2098], 'LABORATORY-CONFIRMED': [2070, 2100], 'SARS-COV-2': [2071], 'DIAGNOSISAlisaNasibullina,': [2072], 'MilyaushaKabirova,': [2073, 2104], "Il'darKabirov,": [2074], 'DamirValishin2022': [2075], 'Actual': [2077, 2107], 'problems': [2078, 2108], 'dentistry,': [2080, 2110], '18,': [2082, 2112, 2203], '2ANALYSIS': [2084], 'THE': [2086, 2089, 2355], 'EFFICACY': [2087], 'USE': [2090], 'THERAPEUTIC': [2092], 'AND': [2093], 'PREVENTIVE': [2094], 'MEDICINES': [2095], 'DIAGNOSIS': [2101], 'SARS-COV-2AlisaNasibullina,': [2103], "Il'darKabirov2022": [2105], '1Egyptian': [2114], 'Consensus': [2115, 3171], 'Role': [2118], 'Ultrasonography': [2121], 'During': [2122], 'PandemicSamyZaky,': [2127], 'Hanaa': [2128], 'KFathelbab,': [2129], 'MohamedElbadry,': [2130], 'FathiyaEl-Raey,': [2131], 'Sherief': [2132], 'MAbd-Elsalam,': [2133], 'Hoda': [2134, 3303], 'AMakhlouf,': [2135, 2137], 'Nahed': [2136], 'AMetwally,': [2139], 'FatmaAli-Eldin,': [2140], 'AbdelazeemHasan,': [2142], 'MohamedAlboraie,': [2143], 'Ahmed': [2144, 2438], 'MYousef,': [2145], 'Hanan': [2146], 'MShata,': [2147], 'AlshaimaaEid,': [2148], 'NohaAsem,': [2149], 'AsmaaKhalaf,': [2150], 'AElnady,': [2152], 'MohamedElbahnasawy,': [2153], 'AhmedAbdelaziz,': [2154], 'Shaker': [2155], 'WShaltout,': [2156], 'Eman': [2157], 'EElshemy,': [2158], 'AtefWahdan,': [2159], 'SHegazi,': [2161], 'AminAbdel': [2162], 'Baki,': [2163], 'MohamedHassany2022': [2164], 'Resistance,': [2169], '15The': [2172], 'Feasibility': [2173], 'Low-dose': [2175], 'Acquisition': [2178], 'Protocol': [2179], 'PneumoniaErayAtlı,': [2185], 'Sadık': [2186], 'AhmetUyanık,': [2187], 'UmutÖğüşlü,': [2188], 'Halime': [2189], 'ÇevikCenkeri,': [2190], 'BirnurYılmaz,': [2191], 'BurçakGümüş2022': [2192], 'Formerly': [2197], '1Investigation': [2205], 'Structural,': [2207], 'Treatment,': [2208], 'Characteristics': [2211], 'Along': [2214], 'Caused': [2218], 'PrevalenceMahamDoagooyan,': [2221], 'Seyedeh': [2222], 'HodaAlavizadeh,': [2223], 'JavadAkhtari,': [2224], 'AmirhosseinSahebkar,': [2225], 'Saeed': [2226], 'Ghanbari': [2227], 'HasanKiade,': [2228], 'Pariya': [2229], 'HaghgooKochesfahani,': [2230], 'FatemehGheybi2022': [2231], 'Disorders': [2234], 'Targets,': [2237], '22,': [2239, 2505], '1Diagnostic': [2241], 'Value': [2242], 'Suspected': [2249, 2644], 'Cases': [2250, 2645], 'Its': [2252], 'Compatibility': [2253], 'Method:': [2256], 'Survey': [2258], 'Jiroft,': [2260], 'IranAlirezaRazzaghi,': [2261], 'Ehsan': [2262], 'GoroeiSardu,': [2263], 'ShivaKargar,': [2264], 'EshaghBarfar,': [2265], 'RezaYusefi,': [2267], 'ArminHoveidaei,': [2268], 'Cain': [2269], 'C.': [2270], 'T.Clark,': [2271], 'SalmanDaneshi2022': [2272], 'Open': [2275], '1SARS-CoV-2': [2282], 'infection:': [2283], 'Pathogenesis,': [2284], 'Immune': [2285], 'Responses,': [2286], 'DiagnosisKapil': [2287], 'KumarMalviya2022': [2288], 'Pure': [2292], 'MicrobiologyGastrointestinal': [2295], 'symptoms': [2296], 'patientsMarijaBrankovic,': [2299], 'IgorJovanovic,': [2300], 'TijanaRadonjic,': [2301], 'IgorPancevski,': [2302], 'IlijaBukurecki,': [2303], 'MarijaDukic,': [2304], 'ViseslavPopadic,': [2305], 'SlobodanKlasnja,': [2306], 'MarijaZdravkovic2022': [2307], 'Vojnosanitetski': [2309], 'pregled,': [2310], '79,': [2312], '5Chest': [2314], 'features': [2316], 'pneumonia:': [2321, 3217], 'meta-analysisSoon': [2326], 'K.LOW,': [2327], 'Mai': [2328], 'N.LUU,': [2329], 'Le': [2330, 2337], 'H.MINH,': [2331], 'AbdelazizABDELAAL,': [2332], 'SzeJIA': [2333], 'NG,': [2334], 'Abdelrahman': [2335], 'G.GAD,': [2336], 'H.NHI,': [2338], 'Tran': [2339], 'N.LE,': [2340], 'Nguyen': [2341], 'T.HUY2022': [2342], 'Minerva': [2344], 'Respiratory': [2345, 2988], '61,': [2348], '1DEVELOPMENT': [2350], 'TECHNOLOGY': [2352], 'FOR': [2353], 'STUDYING': [2354], 'PULMONARY': [2356], 'SURFACTANT': [2357], 'SYSTEM': [2358], 'USING': [2359], 'ELECTRIC': [2360], 'GENERATION': [2361], 'CAPILLARY': [2363], 'WAVES': [2364], '(EXPRESS': [2365], 'METHOD)K.Kazarinov,': [2366], 'V.Malinin,': [2367], 'V.Shchelkonogov,': [2368], 'A.Chekanov2022': [2369], 'Russian': [2371], 'Biological': [2374], 'Physics': [2375], 'Chemisrty,': [2377], '7,': [2379, 3240], '2Severity': [2381], 'machine': [2387], 'records': [2391], 'imagesFubaoZhu,': [2394], 'ZelinZhu,': [2395], 'HanleiZhu,': [2397], 'ZhengyuanGao,': [2398], 'XiaomanLiu,': [2399], 'GuanbinZhou,': [2400], 'YanXu,': [2401], 'FeiShan2022': [2402], 'Care,': [2407, 2581], '6Chest': [2411], 'Total': [2413], 'Score': [2415], 'Admission': [2417], 'Predict': [2419], 'In-Hospital': [2420], 'Mortality': [2421], 'Acute': [2426], 'Chronic': [2428], 'Renal': [2429], 'ImpairmentSamarTharwat,': [2430], 'Gehad': [2431], 'A.Saleh,': [2432], 'MarwaSaleh,': [2433], 'Ahmad': [2434, 3136], 'M.Mounir,': [2435], 'Dina': [2436], 'G.Abdelzaher,': [2437], 'MSalah,': [2439], 'KamalNassar2022': [2441], 'Diagnostics,': [2443], '7Evaluating': [2447], 'Risk:': [2448], 'Benefit': [2449], 'Ratio': [2450], 'Fat-Soluble': [2452], 'Vitamin': [2453], 'Supplementation': [2454], 'SARS-CoV-2-Infected': [2456], 'Autoimmune': [2457], 'Cancer': [2459], 'Vitamin–Drug': [2462], 'Interactions': [2463], 'Exist?RadwaMekky,': [2464], 'NohaElemam,': [2465], 'OmarEltahtawy,': [2466], 'YousraZeinelabdeen,': [2467], 'RanaYouness2022': [2468], 'Life,': [2470], '10Optical': [2474], 'Monitoring': [2475], 'Breathing': [2477], 'Tissue': [2480], 'Oxygenation:': [2481], 'Potential': [2483], 'Application': [2484, 3425], 'Screening': [2487, 2617, 2643], 'MonitoringAaron': [2489], 'JamesMah,': [2490], 'ThienNguyen,': [2491], 'LeiliGhazi': [2492], 'Zadeh,': [2493], 'AtrinaShadgan,': [2494], 'KosarKhaksari,': [2495], 'MehdiNourizadeh,': [2496], 'AliZaidi,': [2497], 'SoonghoPark,': [2498], 'Amir': [2499], 'H.Gandjbakhche,': [2500], 'BabakShadgan2022': [2501], 'Sensors,': [2503], '19Research': [2507], 'Anthology': [2508], 'Improving': [2510], 'Techniques': [2513], 'Analysis': [2515], 'InterventionNandhiniAbirami,': [2517], 'Durai': [2518], 'RajVincent,': [2519], 'SeifedineKadry2022Advances': [2520], 'Healthcare': [2522], 'AdministrationRajaniP.': [2526], 'K.,': [2527], 'NehaMotagi,': [2528], 'KomalNair,': [2529], 'RupaliNarayankar2022Significance': [2530], 'time': [2538], 'pneumoniaRajaaSuhailNajim,': [2545], 'AhmedDiaaAbdulwahab,': [2546], 'DinaNasihTawfeeq2022': [2547], 'Indian': [2549], 'Specialities,': [2553], '1SARS,': [2557], 'MERS': [2558], 'CoVID-19:': [2560], 'An': [2561], 'overview': [2562], 'comparison': [2564], 'clinical,': [2566, 3388], 'radiological': [2569], 'featuresManasPustake,': [2570], 'IshaTambolkar,': [2571], 'PurushottamGiri,': [2572], 'CharmiGandhi2022': [2573], 'Family': [2577], 'Primary': [2580], '1Findings': [2585], 'cases': [2588, 3399], 'protocols': [2590], 'be': [2592], 'followed': [2593], 'dental': [2595], 'operatoriesAnshulSawhney,': [2596], 'MeghaRalli,': [2597], 'ShishirDhar,': [2598], 'CharanjitSinghSaimbi2022': [2599], 'Dr.': [2604, 2625], 'D.Y.': [2605], 'Patil': [2606], 'Vidyapeeth,': [2607], '3Transfer': [2611], 'Learning-Based': [2612], 'Models': [2615], 'ImagesDr.': [2623], 'S.Malliga,': [2624], 'V.Kogilavani,': [2627], 'R.Deepti,': [2628], 'GowthamKrishnan,': [2630], 'G.': [2631], 'J.Adhithiya2022': [2632], 'Communications,': [2637], '16Chest': [2639], 'Computed': [2640, 2921, 3428], 'Tomography': [2641, 3429], 'Trauma': [2650], 'PatientsCamila': [2651], 'RGuetter,': [2652], 'Rebeca': [2653], 'TIurkiewiecz,': [2654], 'Matheus': [2655], 'SEvangelista,': [2656], 'Gabriel': [2657], 'MNogueira,': [2658], 'Leonardo': [2659], 'KRafael,': [2660], 'Silvania': [2661], 'KPimentel,': [2662], 'Fabio': [2663], 'HenriqueDe': [2664], 'Carvalho2022': [2665], 'Panamerican': [2667], 'Trauma,': [2670], 'Critical': [2671], 'Surgery,': [2675], 'Regimen': [2683], 'Evaluation': [2685, 2907], 'Asymptomatic': [2687], 'SARS': [2688], 'CoV-II': [2689], 'CarriersAshwiniP.': [2690], 'Dhruv,': [2691], 'NileshK.': [2692], 'Patel,': [2693, 2695], 'AshokB.': [2694], 'AmitKumar': [2696], 'Vyas,': [2698], 'AjayI.': [2699], 'Patel2022': [2700], 'Asian': [2702], 'ResearchAutomatic': [2706], 'auscultation': [2708], 'grading': [2709], 'artificial': [2718], 'intelligence': [2719], 'algorithms:': [2720], 'cohort': [2722], 'studyHonglingZhu,': [2723], 'JinshengLai,': [2724], 'BingqiangLiu,': [2725], 'ZiyuanWen,': [2726], 'YulongXiong,': [2727], 'HonglinLi,': [2728], 'YuhuaZhou,': [2729], 'QiuyunFu,': [2730], 'GuoyiYu,': [2731], 'XiaoxiangYan,': [2732], 'XiaoyunYang,': [2733], 'JianminZhang,': [2734], 'ChaoWang,': [2735], 'HesongZeng2022': [2736], 'Programs': [2741, 2770], 'Biomedicine,': [2743, 2772], '213Supervised': [2745], 'weakly': [2747], 'supervised': [2748], 'models': [2751], 'diagnosis:': [2755, 3130], 'reviewHaseebHassan,': [2758], 'ZhaoyuRen,': [2759], 'ChengminZhou,': [2760], 'Muazzam': [2761], 'A.Khan,': [2762], 'YiPan,': [2763], 'JianZhao,': [2764], 'BingdingHuang2022': [2765], '218Nanomedicine': [2774], 'deliver': [2776], 'biological': [2777], 'macromolecules': [2778], 'treating': [2780], 'COVID-19BarnabasWilson,': [2781], 'KannothMukundan': [2782], 'Geetha2022': [2783], 'Vaccine,': [2785], '40,': [2787], '29A': [2789], 'Hybrid': [2790], 'Approach': [2791], 'Biogeography-Based': [2796], 'Optimization': [2797], 'LearningK.Venkatachalam,': [2800], 'SiulySiuly,': [2801], 'M.Vinoth': [2802], 'Kumar,': [2803], 'PraveenLalwani,': [2804], 'ManasKumar': [2805], 'Mishra,': [2806], 'EnamulKabir2022': [2807], 'Computers,': [2809], 'Materials': [2810], 'Continua,': [2812], '70,': [2814], '2Covid-19': [2816], 'Symptoms': [2817], 'Periods': [2818], 'Transfer-Learning': [2821], 'TechniquesFahadAlbogamy,': [2822], 'MohammedFaisal,': [2823], 'MohammedArafah,': [2824], 'HebahElGibreen2022': [2825], 'Automation': [2828], 'Soft': [2830], 'Computing,': [2831], '3Role': [2835], 'coronary': [2838], 'non-coronary': [2840], 'cardiovascular': [2841], 'non-cardiac': [2844], 'gated': [2845], 'thoracic': [2846], 'predicting': [2849], 'mortality': [2850], 'infectionAziz': [2853], 'InanCelik,': [2854], 'TahirBezgin,': [2855], 'Nart': [2856], 'ZaferBaytugan,': [2857], 'ResitCoskun,': [2858], 'Muhammet': [2859], 'BugraKaraaslan,': [2860], 'MetinCagdas2022': [2861], '89Relationship': [2866], 'BMI': [2868], 'PatientsMeisamMoezzi,': [2874], 'MandanaGhanavati,': [2875], 'MozhanHeydarnezhad,': [2876], 'ElhamFarhadi,': [2877], 'RezaRafati': [2879], 'Navaei2022': [2880], 'Anesthesiology': [2882], 'Pain': [2884], '4Cytokine': [2889], 'storm': [2890], 'syndrome': [2891], 'reviewBrairaWahid,': [2895], 'NoshabaRani,': [2896], 'MuhammadIdrees2022': [2897], 'Zeitschrift': [2899], 'für': [2900], 'Naturforschung': [2901], 'C,': [2902], '77,': [2904], '1-2Quantitative': [2906], 'Parenchyma': [2910], 'Changes': [2911], 'Volumetric': [2918], 'Study': [2919], 'TomographyBahattinÖZKUL,': [2922], 'Furkan': [2923], 'ErtürkURFALI,': [2924], 'KıyasettinASİL2022': [2925], 'Experimental': [2929], '2COVID-19:': [2935], 'Pathophysiology,': [2936], 'Transmission,': [2937], 'Development': [2940], 'Vaccination': [2945], 'StrategiesVishal': [2946], 'KumarSingh,': [2947], 'HimaniChaurasia,': [2948], 'RichaMishra,': [2949], 'RitikaSrivastava,': [2950], 'Aditya': [2951], 'K.Yadav,': [2952], 'JayatiDwivedi,': [2953], 'PrashantSingh,': [2954], 'Ramendra': [2955], 'K.Singh2022': [2956], 'Design,': [2960], '27In-line': [2964], 'treatments': [2965], 'initiatives': [2968], 'fight': [2970], 'against': [2971], 'outbreakMuktaAgrawal,': [2973], 'ShailendraSaraf,': [2974], 'SwarnlataSaraf,': [2975], 'Upadhyayula': [2976], 'SuryanarayanaMurty,': [2977], 'Sucheta': [2978], 'BanerjeeKurundkar,': [2979], 'DebjaniRoy,': [2980], 'PankajJoshi,': [2981], 'DhananjaySable,': [2982], 'Yogendra': [2983], 'KumarChoudhary,': [2984], 'PrashantKesharwani,': [2985], 'AmitAlexander2022Jan1': [2986], '191Focus,': [2991], 'Fusion,': [2992], 'Rectify:': [2994], 'Context-Aware': [2995], 'SegmentationRuxinWang,': [3001], 'ChaojieJi,': [3002], 'YuxiaoZhang,': [3003], 'YeLi2022Jan1': [3004], 'Neural': [3009], 'Systems,': [3013, 3290, 3296], '1Comparación': [3017], 'los': [3019], 'hallazgos': [3020], 'tomografía': [3023], 'computarizada': [3024], 'pacientes': [3026], 'pediátricos': [3029], 'con': [3030], 'COVID-19J.V.Waller,': [3031], 'K.K.Lin,': [3032], 'M.J.Diaz,': [3033], 'T.Miao,': [3034], 'A.Amireh,': [3035], 'Ch.Agyemang,': [3036], 'R.E.Carter,': [3037], 'S.Bae,': [3038], 'T.Henry2021Nov1': [3039], 'Radiología,': [3041], '6COVID-19': [3045], 'lesion': [3046], 'discrimination': [3047], 'localization': [3049], 'multi-receptive': [3053], 'field': [3054], 'attention': [3055, 3079], 'module': [3056], 'imagesXiaMa,': [3059], 'BingbingZheng,': [3060], 'YuZhu,': [3061], 'FuliYu,': [3062], 'RixinZhang,': [3063], 'BudongChen2021Sep1': [3064], 'Optik,': [3066], '241D2A': [3068], 'U-Net:': [3069], 'slices': [3075], 'dual': [3078], 'hybrid': [3081], 'convolutionXiangyuZhao,': [3083], 'PengZhang,': [3084], 'FanSong,': [3085], 'GuangdaFan,': [3086], 'YangyangSun,': [3087], 'YujiaWang,': [3088], 'ZheyuanTian,': [3089], 'LuqiZhang,': [3090], 'GuangleiZhang2021Aug1': [3091], '135A': [3099], 'stacked': [3100], 'ensemble': [3101], 'high': [3108], 'recall': [3109], 'accuracyEbenezerJangam,': [3111], 'RaoAnnavarapu2021Aug1': [3114], '135Medical': [3122], 'computational': [3125], 'image': [3126], 'analysis': [3127, 3396], 'reviewShahabedinNabavi,': [3132], 'AzarEjmalian,': [3133], 'Mohsen': [3134], 'EbrahimiMoghaddam,': [3135], 'AliAbin,': [3137], 'Alejandro': [3138], 'F.Frangi,': [3139], 'MohammadMohammadi,': [3140], 'Hamidreza': [3141], 'SalighehRad2021Aug1': [3142], '135Surviving': [3150], 'complications': [3154], 'post': [3155], 'total': [3156], 'laryngectomyArpanaSingh,': [3157], 'AbhishekBhardwaj,': [3158], 'NivedhanRavichandran,': [3159], 'ManuMalhotra28': [3160], 'BMJ': [3164], 'Case': [3165], '14,': [3168], '7RSNA-STR-ACR': [3170], 'Statement': [3172], 'Patterns:': [3176], 'Interreader': [3177], 'Agreement': [3178], '240': [3180], 'Consecutive': [3181], 'Association': [3184], 'With': [3185], 'StatusClaudio': [3187], 'F.Silva,': [3188], 'JuliaAlegria,': [3189], 'CristobalRamos,': [3190], 'JaimeVerdugo,': [3191], 'Juan-CarlosDiaz,': [3192], 'CristianVarela,': [3193], 'MarioBarbe4': [3194], 'May': [3195], 'Assisted': [3201], 'Tomography,': [3202], '3Remarkable': [3206], 'vessel': [3207], 'enlargement': [3208], 'within': [3209], 'consolidation': [3211], 'compared': [3214], 'AH1N1': [3216], 'study': [3220], 'ItalyAndreaBianco,': [3222], 'TullioValente,': [3223], 'FabioPerrotta,': [3224], 'ElviraStellato,': [3225], 'LucaBrunese,': [3226], 'Brad': [3227], 'J.Wood,': [3228], 'GianpaoloCarrafiello,': [3229], 'RobertoParrella,': [3230], 'LuigiAronne,': [3231], 'MatildeBoccia,': [3232], 'FrancescoLassandro,': [3233], 'GiuliaLassandro,': [3234], 'GaetanoRea,': [3235], 'FilippoScialò2021May1': [3236], 'Heliyon,': [3238], "5Editor's": [3242], 'Note:': [3243], '2020—A': [3244], 'Year': [3245], 'Like': [3246], 'No': [3247], 'Other': [3248], 'RadiologyDavid': [3250], 'Bluemke,': [3252], '22': [3254], '298,': [3260], '2Learning': [3262], 'learn': [3264], 'yourself:': [3266], 'Unsupervised': [3267], 'meta‐learning': [3268], 'self‐knowledge': [3270], 'distillation': [3271], 'COVID‐19': [3273], 'casesWenboZheng,': [3277], 'LanYan,': [3278], 'ChaoGou,': [3279], 'Zhi‐ChengZhang,': [3280], 'Jun': [3281], 'J.Zhang,': [3282], 'MingHu,': [3283], 'Fei‐YueWang2021': [3284], '36,': [3292], '8Studies': [3294], 'Decision': [3297], 'ControlAmira': [3299], 'MofrehIbrahim,': [3300], 'Nour': [3301], 'El': [3302], 'MohamedBishady,': [3304], 'Samar': [3305], 'HassanElghalban,': [3306], 'Nagham': [3307], 'NessimMostafa,': [3308], 'Mohab': [3309], 'MohamedEid,': [3310], 'Khaled': [3311], 'MohamedAbdelhamid2021': [3312], '358Lecture': [3316], 'ScienceSeong': [3320], 'TaeKim,': [3321], 'LeiliGoli,': [3322], 'MagdaliniPaschali,': [3323], 'AshkanKhakzar,': [3324], 'MatthiasKeicher,': [3325], 'TobiasCzempiel,': [3326], 'EgonBurian,': [3327], 'RickmerBraren,': [3328], 'NassirNavab,': [3329], 'ThomasWendler2021': [3330], '12907Communications': [3334], 'ScienceDevanshShah,': [3339], 'Santosh': [3340], 'KumarBharti2021': [3341], '1374Clinical': [3345], 'DiagnosticsLiangMing,': [3347], 'TingSun,': [3348], 'HaitaoDing,': [3349], 'JuanHe,': [3350], 'WenjuanWu,': [3351], 'MinZhang,': [3352], 'SiminYang,': [3353], 'HuaguoXu,': [3354], 'FangNi,': [3355], 'ShiyangPan,': [3356], 'QunZhang,': [3357], 'YongpingLin2021Abdominal': [3358], 'incidence,': [3363], 'indications,': [3364], 'findingsDaniel': [3366], 'T.Barkmeier,': [3367], 'Erica': [3368], 'B.Stein,': [3369], 'KatherineBojicic,': [3370], 'BamideleOtemuyiwa,': [3371], 'DharshanVummidi,': [3372], 'AamerChughtai,': [3373], 'James': [3374], 'H.Ellis2021': [3375], 'Abdominal': [3377], '46,': [3380], '3Learning': [3382], 'pathophysiological': [3384], 'laboratory,': [3389], 'high-resolution': [3391], 'features:': [3393], '128': [3398], 'severitySameh': [3402], 'MostafaAzab,': [3403], 'Ashraf': [3404], 'AnasZytoon,': [3405], 'Zeinab': [3406], 'Abdel': [3407], 'AzizKasemy,': [3408], 'Suzan': [3409], 'FouadOmar,': [3410], 'Suzy': [3411], 'FayezEwida,': [3412], 'Karim': [3413], 'AymanSakr,': [3414], 'Tarek': [3415], 'Fawzy': [3416], 'AbdElla2021': [3417], '3Clinical': [3424], '(CT)': [3430], 'Characterization': [3434]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W3003901880', 'counts_by_year': [{'year': 2024, 'cited_by_count': 13}, {'year': 2023, 'cited_by_count': 38}, {'year': 2022, 'cited_by_count': 87}, {'year': 2021, 'cited_by_count': 192}, {'year': 2020, 'cited_by_count': 387}, {'year': 2019, 'cited_by_count': 1}], 'updated_date': '2024-12-20T11:10:23.569371', 'created_date': '2020-02-07'}