Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2987505621', 'doi': 'https://doi.org/10.1109/iccv.2019.00264', 'title': 'End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans', 'display_name': 'End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans', 'publication_year': 2019, 'publication_date': '2019-10-01', 'ids': {'openalex': 'https://openalex.org/W2987505621', 'doi': 'https://doi.org/10.1109/iccv.2019.00264', 'mag': '2987505621'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/iccv.2019.00264', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607764', 'display_name': '2021 IEEE/CVF International Conference on Computer Vision (ICCV)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'http://arxiv.org/pdf/1906.04201', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5104238128', 'display_name': 'Armen Avetisyan', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I62916508', 'display_name': 'Technical University of Munich', 'ror': 'https://ror.org/02kkvpp62', 'country_code': 'DE', 'type': 'education', 'lineage': ['https://openalex.org/I62916508']}], 'countries': ['DE'], 'is_corresponding': False, 'raw_author_name': 'Armen Avetisyan', 'raw_affiliation_strings': ['Technical University of Munich'], 'affiliations': [{'raw_affiliation_string': 'Technical University of Munich', 'institution_ids': ['https://openalex.org/I62916508']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5026634347', 'display_name': 'Angela Dai', 'orcid': 'https://orcid.org/0000-0002-6241-8782'}, 'institutions': [{'id': 'https://openalex.org/I62916508', 'display_name': 'Technical University of Munich', 'ror': 'https://ror.org/02kkvpp62', 'country_code': 'DE', 'type': 'education', 'lineage': ['https://openalex.org/I62916508']}], 'countries': ['DE'], 'is_corresponding': False, 'raw_author_name': 'Angela Dai', 'raw_affiliation_strings': ['Technical University of Munich'], 'affiliations': [{'raw_affiliation_string': 'Technical University of Munich', 'institution_ids': ['https://openalex.org/I62916508']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5088583491', 'display_name': 'Matthias Nießner', 'orcid': 'https://orcid.org/0000-0001-6093-5199'}, 'institutions': [{'id': 'https://openalex.org/I62916508', 'display_name': 'Technical University of Munich', 'ror': 'https://ror.org/02kkvpp62', 'country_code': 'DE', 'type': 'education', 'lineage': ['https://openalex.org/I62916508']}], 'countries': ['DE'], 'is_corresponding': False, 'raw_author_name': 'Matthias Niessner', 'raw_affiliation_strings': ['Technical University of Munich, Munich, Germany'], 'affiliations': [{'raw_affiliation_string': 'Technical University of Munich, Munich, Germany', 'institution_ids': ['https://openalex.org/I62916508']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 7.88, 'has_fulltext': False, 'cited_by_count': 80, 'citation_normalized_percentile': {'value': 0.945172, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 98, 'max': 99}, 'biblio': {'volume': None, 'issue': None, 'first_page': '2551', 'last_page': '2560'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10191', 'display_name': 'Robotics and Sensor-Based Localization', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/2202', 'display_name': 'Aerospace Engineering'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11211', 'display_name': '3D Surveying and Cultural Heritage', 'score': 0.9994, 'subfield': {'id': 'https://openalex.org/subfields/1907', 'display_name': 'Geology'}, 'field': {'id': 'https://openalex.org/fields/19', 'display_name': 'Earth and Planetary Sciences'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/solid-modeling', 'display_name': 'Solid modeling', 'score': 0.45695946}], 'concepts': [{'id': 'https://openalex.org/C194789388', 'wikidata': 'https://www.wikidata.org/wiki/Q17855283', 'display_name': 'CAD', 'level': 2, 'score': 0.872254}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.6863937}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.6807221}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.6215375}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.61991024}, {'id': 'https://openalex.org/C202615002', 'wikidata': 'https://www.wikidata.org/wiki/Q783507', 'display_name': 'Differentiable function', 'level': 2, 'score': 0.54567325}, {'id': 'https://openalex.org/C204241405', 'wikidata': 'https://www.wikidata.org/wiki/Q461499', 'display_name': 'Transformation (genetics)', 'level': 3, 'score': 0.54282117}, {'id': 'https://openalex.org/C2779886137', 'wikidata': 'https://www.wikidata.org/wiki/Q21030012', 'display_name': 'Symmetry (geometry)', 'level': 2, 'score': 0.4863327}, {'id': 'https://openalex.org/C108882727', 'wikidata': 'https://www.wikidata.org/wiki/Q2991685', 'display_name': 'Solid modeling', 'level': 2, 'score': 0.45695946}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.41949886}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.27554077}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.19365782}, {'id': 'https://openalex.org/C199639397', 'wikidata': 'https://www.wikidata.org/wiki/Q1788588', 'display_name': 'Engineering drawing', 'level': 1, 'score': 0.14532915}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C55493867', 'wikidata': 'https://www.wikidata.org/wiki/Q7094', 'display_name': 'Biochemistry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C185592680', 'wikidata': 'https://www.wikidata.org/wiki/Q2329', 'display_name': 'Chemistry', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C127413603', 'wikidata': 'https://www.wikidata.org/wiki/Q11023', 'display_name': 'Engineering', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C104317684', 'wikidata': 'https://www.wikidata.org/wiki/Q7187', 'display_name': 'Gene', 'level': 2, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/iccv.2019.00264', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607764', 'display_name': '2021 IEEE/CVF International Conference on Computer Vision (ICCV)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'http://arxiv.org/abs/1906.04201', 'pdf_url': 'http://arxiv.org/pdf/1906.04201', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'http://arxiv.org/abs/1906.04201', 'pdf_url': 'http://arxiv.org/pdf/1906.04201', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/11', 'score': 0.75, 'display_name': 'Sustainable cities and communities'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 43, 'referenced_works': ['https://openalex.org/W1949568868', 'https://openalex.org/W1953319329', 'https://openalex.org/W1957167950', 'https://openalex.org/W1987648924', 'https://openalex.org/W1991264156', 'https://openalex.org/W2009422376', 'https://openalex.org/W2049351243', 'https://openalex.org/W2065906272', 'https://openalex.org/W2071634722', 'https://openalex.org/W2071906076', 'https://openalex.org/W2097374608', 'https://openalex.org/W2097696373', 'https://openalex.org/W2099940712', 'https://openalex.org/W2104572712', 'https://openalex.org/W2139114878', 'https://openalex.org/W2160643963', 'https://openalex.org/W2160821342', 'https://openalex.org/W2190691619', 'https://openalex.org/W2194775991', 'https://openalex.org/W2250172176', 'https://openalex.org/W2336961836', 'https://openalex.org/W2519379752', 'https://openalex.org/W2556455135', 'https://openalex.org/W2557465155', 'https://openalex.org/W2563685048', 'https://openalex.org/W2566265240', 'https://openalex.org/W2578797046', 'https://openalex.org/W2594519801', 'https://openalex.org/W2742847802', 'https://openalex.org/W2885364117', 'https://openalex.org/W2889300857', 'https://openalex.org/W2903435684', 'https://openalex.org/W2904332125', 'https://openalex.org/W2905260191', 'https://openalex.org/W2943077785', 'https://openalex.org/W2955307761', 'https://openalex.org/W2962988048', 'https://openalex.org/W2963640720', 'https://openalex.org/W2963892972', 'https://openalex.org/W3157974198', 'https://openalex.org/W4250952223', 'https://openalex.org/W4252201060', 'https://openalex.org/W4394671432'], 'related_works': ['https://openalex.org/W4239175499', 'https://openalex.org/W4220682299', 'https://openalex.org/W2963563190', 'https://openalex.org/W2804370421', 'https://openalex.org/W2766742654', 'https://openalex.org/W2536262775', 'https://openalex.org/W2362624460', 'https://openalex.org/W2062451777', 'https://openalex.org/W2050034079', 'https://openalex.org/W1508458698'], 'abstract_inverted_index': {'We': [0], 'present': [1], 'a': [2, 15, 20, 26, 41, 49, 65, 85, 92, 105, 113, 125, 128], 'novel,': [3], 'end-to-end': [4], 'approach': [5, 69, 110], 'to': [6, 10, 25, 60, 103, 121, 136, 146], 'align': [7, 57], 'CAD': [8, 28, 58, 82, 95, 119, 143], 'models': [9, 59, 120], 'an': [11], '3D': [12, 23], 'scan': [13, 24, 80, 126], 'of': [14, 19, 64, 98, 118, 124], 'scene,': [16, 67], 'enabling': [17, 116], 'transformation': [18], 'noisy,': [21], 'incomplete': [22], 'compact,': [27], 'reconstruction': [29], 'with': [30, 48, 148], 'clean,': [31], 'complete': [32], 'object': [33, 52, 71, 77, 87], 'geometry.': [34], 'Our': [35, 109], 'main': [36], 'contribution': [37], 'lies': [38], 'in': [39, 84, 112, 127], 'formulating': [40], 'differentiable': [42, 106], 'Procrustes': [43, 107], 'alignment': [44, 117, 145], 'that': [45], 'is': [46], 'paired': [47], 'symmetry-aware': [50, 75], 'dense': [51, 76], 'correspondence': [53], 'prediction.': [54], 'To': [55], 'simultaneously': [56], 'all': [61], 'the': [62, 122], 'objects': [63, 123], 'scanned': [66], 'our': [68, 134], 'detects': [70], 'locations,': [72], 'then': [73, 101], 'predicts': [74], 'correspondences': [78], 'between': [79], 'and': [81], 'geometry': [83], 'unified': [86], 'space,': [88], 'as': [89, 91], 'well': [90], 'nearest': [93], 'neighbor': [94], 'model,': [96], 'both': [97], 'which': [99], 'are': [100], 'used': [102], 'inform': [104], 'alignment.': [108], 'operates': [111], 'fully-convolutional': [114], 'fashion,': [115], 'single': [129], 'forward': [130], 'pass.': [131], 'This': [132], 'enables': [133], 'method': [135], 'outperform': [137], 'state-of-the-art': [138], 'approaches': [139], 'by': [140], '19.04%': [141], 'for': [142], 'model': [144], 'scans,': [147], 'approximately': [149], '≈250x': [150], 'faster': [151], 'runtime': [152], 'than': [153], 'previous': [154], 'data-driven': [155], 'approaches.': [156]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2987505621', 'counts_by_year': [{'year': 2024, 'cited_by_count': 13}, {'year': 2023, 'cited_by_count': 16}, {'year': 2022, 'cited_by_count': 12}, {'year': 2021, 'cited_by_count': 20}, {'year': 2020, 'cited_by_count': 19}], 'updated_date': '2025-01-07T00:26:41.413332', 'created_date': '2019-11-22'}