Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2969764577', 'doi': 'https://doi.org/10.1109/tip.2019.2933735', 'title': 'Category-Aware Spatial Constraint for Weakly Supervised Detection', 'display_name': 'Category-Aware Spatial Constraint for Weakly Supervised Detection', 'publication_year': 2019, 'publication_date': '2019-08-22', 'ids': {'openalex': 'https://openalex.org/W2969764577', 'doi': 'https://doi.org/10.1109/tip.2019.2933735', 'mag': '2969764577', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/31449015'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tip.2019.2933735', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4210173141', 'display_name': 'IEEE Transactions on Image Processing', 'issn_l': '1057-7149', 'issn': ['1057-7149', '1941-0042'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5039883116', 'display_name': 'Yunhang Shen', 'orcid': 'https://orcid.org/0000-0002-3970-7519'}, 'institutions': [{'id': 'https://openalex.org/I191208505', 'display_name': 'Xiamen University', 'ror': 'https://ror.org/00mcjh785', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I191208505']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Yunhang Shen', 'raw_affiliation_strings': ['Media Analytics and Computing Laboratory, School of Informatics, Xiamen University, Xiamen, China'], 'affiliations': [{'raw_affiliation_string': 'Media Analytics and Computing Laboratory, School of Informatics, Xiamen University, Xiamen, China', 'institution_ids': ['https://openalex.org/I191208505']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5016080094', 'display_name': 'Rongrong Ji', 'orcid': 'https://orcid.org/0000-0001-9163-2932'}, 'institutions': [{'id': 'https://openalex.org/I191208505', 'display_name': 'Xiamen University', 'ror': 'https://ror.org/00mcjh785', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I191208505']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Rongrong Ji', 'raw_affiliation_strings': ['Media Analytics and Computing Laboratory, School of Informatics, Xiamen University, Xiamen, China'], 'affiliations': [{'raw_affiliation_string': 'Media Analytics and Computing Laboratory, School of Informatics, Xiamen University, Xiamen, China', 'institution_ids': ['https://openalex.org/I191208505']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5023035795', 'display_name': 'Kuiyuan Yang', 'orcid': 'https://orcid.org/0000-0003-3063-2925'}, 'institutions': [], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Kuiyuan Yang', 'raw_affiliation_strings': ['DeepMotion, Beijing, China'], 'affiliations': [{'raw_affiliation_string': 'DeepMotion, Beijing, China', 'institution_ids': []}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5015874725', 'display_name': 'Cheng Deng', 'orcid': 'https://orcid.org/0000-0003-2620-3247'}, 'institutions': [{'id': 'https://openalex.org/I149594827', 'display_name': 'Xidian University', 'ror': 'https://ror.org/05s92vm98', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I149594827']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Cheng Deng', 'raw_affiliation_strings': ["School of Electronic Engineering, Xidian University, Xi'an, China"], 'affiliations': [{'raw_affiliation_string': "School of Electronic Engineering, Xidian University, Xi'an, China", 'institution_ids': ['https://openalex.org/I149594827']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5055085354', 'display_name': 'Changhu Wang', 'orcid': 'https://orcid.org/0000-0001-8373-2597'}, 'institutions': [], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Changhu Wang', 'raw_affiliation_strings': ['ByteDance AI Lab, Beijing, China'], 'affiliations': [{'raw_affiliation_string': 'ByteDance AI Lab, Beijing, China', 'institution_ids': []}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 3.044, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 34, 'citation_normalized_percentile': {'value': 0.828105, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 95, 'max': 96}, 'biblio': {'volume': '29', 'issue': None, 'first_page': '843', 'last_page': '858'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10627', 'display_name': 'Advanced Image and Video Retrieval Techniques', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10627', 'display_name': 'Advanced Image and Video Retrieval Techniques', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10689', 'display_name': 'Remote-Sensing Image Classification', 'score': 0.9985, 'subfield': {'id': 'https://openalex.org/subfields/2214', 'display_name': 'Media Technology'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/pascal', 'display_name': 'Pascal (unit)', 'score': 0.7254424}, {'id': 'https://openalex.org/keywords/benchmark', 'display_name': 'Benchmark (surveying)', 'score': 0.4895035}, {'id': 'https://openalex.org/keywords/supervised-learning', 'display_name': 'Supervised Learning', 'score': 0.45508462}], 'concepts': [{'id': 'https://openalex.org/C75608658', 'wikidata': 'https://www.wikidata.org/wiki/Q44395', 'display_name': 'Pascal (unit)', 'level': 2, 'score': 0.7254424}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.69177455}, {'id': 'https://openalex.org/C2776151529', 'wikidata': 'https://www.wikidata.org/wiki/Q3045304', 'display_name': 'Object detection', 'level': 3, 'score': 0.6558601}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.58945626}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.5331425}, {'id': 'https://openalex.org/C185798385', 'wikidata': 'https://www.wikidata.org/wiki/Q1161707', 'display_name': 'Benchmark (surveying)', 'level': 2, 'score': 0.4895035}, {'id': 'https://openalex.org/C2776036281', 'wikidata': 'https://www.wikidata.org/wiki/Q48769818', 'display_name': 'Constraint (computer-aided design)', 'level': 2, 'score': 0.4880587}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.4751779}, {'id': 'https://openalex.org/C160633673', 'wikidata': 'https://www.wikidata.org/wiki/Q355198', 'display_name': 'Pixel', 'level': 2, 'score': 0.4634535}, {'id': 'https://openalex.org/C136389625', 'wikidata': 'https://www.wikidata.org/wiki/Q334384', 'display_name': 'Supervised learning', 'level': 3, 'score': 0.45508462}, {'id': 'https://openalex.org/C64876066', 'wikidata': 'https://www.wikidata.org/wiki/Q5141226', 'display_name': 'Cognitive neuroscience of visual object recognition', 'level': 3, 'score': 0.44071773}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.3817765}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.38080236}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.12188697}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C13280743', 'wikidata': 'https://www.wikidata.org/wiki/Q131089', 'display_name': 'Geodesy', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C205649164', 'wikidata': 'https://www.wikidata.org/wiki/Q1071', 'display_name': 'Geography', 'level': 0, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tip.2019.2933735', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4210173141', 'display_name': 'IEEE Transactions on Image Processing', 'issn_l': '1057-7149', 'issn': ['1057-7149', '1941-0042'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/31449015', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [{'funder': 'https://openalex.org/F4320321001', 'funder_display_name': 'National Natural Science Foundation of China', 'award_id': '61572410'}, {'funder': 'https://openalex.org/F4320321001', 'funder_display_name': 'National Natural Science Foundation of China', 'award_id': 'U1705262'}, {'funder': 'https://openalex.org/F4320321001', 'funder_display_name': 'National Natural Science Foundation of China', 'award_id': '61772443'}, {'funder': 'https://openalex.org/F4320321543', 'funder_display_name': 'China Postdoctoral Science Foundation', 'award_id': '2017M612134'}, {'funder': 'https://openalex.org/F4320321878', 'funder_display_name': 'Natural Science Foundation of Fujian Province', 'award_id': '2018J01106'}, {'funder': 'https://openalex.org/F4320321878', 'funder_display_name': 'Natural Science Foundation of Fujian Province', 'award_id': '2017J01125'}, {'funder': 'https://openalex.org/F4320335777', 'funder_display_name': 'National Key Research and Development Program of China', 'award_id': '2016YFB1001503'}, {'funder': 'https://openalex.org/F4320335777', 'funder_display_name': 'National Key Research and Development Program of China', 'award_id': '2017YFC0113000'}], 'datasets': [], 'versions': [], 'referenced_works_count': 85, 'referenced_works': ['https://openalex.org/W1533861849', 'https://openalex.org/W1536680647', 'https://openalex.org/W1575299770', 'https://openalex.org/W1586079445', 'https://openalex.org/W1667652561', 'https://openalex.org/W1686810756', 'https://openalex.org/W1772076007', 'https://openalex.org/W1832500336', 'https://openalex.org/W1849277567', 'https://openalex.org/W1861492603', 'https://openalex.org/W1932624639', 'https://openalex.org/W1934621328', 'https://openalex.org/W1945443124', 'https://openalex.org/W1991367009', 'https://openalex.org/W1994488211', 'https://openalex.org/W2010792435', 'https://openalex.org/W2016016818', 'https://openalex.org/W2031489346', 'https://openalex.org/W2079267072', 'https://openalex.org/W2088049833', 'https://openalex.org/W2106841609', 'https://openalex.org/W2109326754', 'https://openalex.org/W2117539524', 'https://openalex.org/W2123045220', 'https://openalex.org/W2126861575', 'https://openalex.org/W2133324800', 'https://openalex.org/W2141339768', 'https://openalex.org/W2155893237', 'https://openalex.org/W2179352600', 'https://openalex.org/W2186827065', 'https://openalex.org/W2220111505', 'https://openalex.org/W2221625691', 'https://openalex.org/W2290280043', 'https://openalex.org/W2295107390', 'https://openalex.org/W2298532145', 'https://openalex.org/W2441255125', 'https://openalex.org/W2503388974', 'https://openalex.org/W2517617019', 'https://openalex.org/W2519284461', 'https://openalex.org/W2519610629', 'https://openalex.org/W2520774990', 'https://openalex.org/W2559348937', 'https://openalex.org/W2564531840', 'https://openalex.org/W2587037412', 'https://openalex.org/W2592384071', 'https://openalex.org/W2601113512', 'https://openalex.org/W2604260814', 'https://openalex.org/W2606831796', 'https://openalex.org/W2613833277', 'https://openalex.org/W2744812922', 'https://openalex.org/W2747170135', 'https://openalex.org/W2797826601', 'https://openalex.org/W2798748179', 'https://openalex.org/W2799177530', 'https://openalex.org/W2813431130', 'https://openalex.org/W2884195989', 'https://openalex.org/W2891894830', 'https://openalex.org/W2892522889', 'https://openalex.org/W2895236117', 'https://openalex.org/W2952072685', 'https://openalex.org/W2962823940', 'https://openalex.org/W2962835968', 'https://openalex.org/W2962851944', 'https://openalex.org/W2962855939', 'https://openalex.org/W2962970253', 'https://openalex.org/W2963045696', 'https://openalex.org/W2963173190', 'https://openalex.org/W2963254348', 'https://openalex.org/W2963382180', 'https://openalex.org/W2963490895', 'https://openalex.org/W2963603913', 'https://openalex.org/W2963697527', 'https://openalex.org/W2963794204', 'https://openalex.org/W2963795442', 'https://openalex.org/W2963949812', 'https://openalex.org/W2963977581', 'https://openalex.org/W2964073328', 'https://openalex.org/W2964274719', 'https://openalex.org/W3097096317', 'https://openalex.org/W3098722327', 'https://openalex.org/W3104979525', 'https://openalex.org/W3106250896', 'https://openalex.org/W318792885', 'https://openalex.org/W4302296459', 'https://openalex.org/W7746136'], 'related_works': ['https://openalex.org/W4376620596', 'https://openalex.org/W4298525700', 'https://openalex.org/W4293054914', 'https://openalex.org/W3177249605', 'https://openalex.org/W3138508047', 'https://openalex.org/W2953362004', 'https://openalex.org/W2549121492', 'https://openalex.org/W2534152068', 'https://openalex.org/W1972515067', 'https://openalex.org/W1689909837'], 'abstract_inverted_index': {'Weakly': [0], 'supervised': [1, 40, 87, 183], 'object': [2, 50, 88, 184], 'detection': [3, 89, 185], 'has': [4], 'attracted': [5], 'increasing': [6], 'research': [7], 'attention': [8], 'recently.': [9], 'To': [10], 'this': [11, 32, 54], 'end,': [12], 'most': [13, 168], 'existing': [14, 193], 'schemes': [15], 'rely': [16], 'on': [17, 166], 'scoring': [18], 'category-independent': [19], 'region': [20, 124], 'proposals,': [21, 81], 'which': [22, 45, 82, 109, 175], 'is': [23, 83, 110, 126, 145], 'formulated': [24], 'as': [25, 105], 'a': [26, 60, 64, 74, 142, 159], 'multiple': [27], 'instance': [28], 'learning': [29, 93], 'problem.': [30], 'During': [31], 'process,': [33], 'the': [34, 68, 99, 134, 150, 167, 192, 197], 'proposal': [35, 125], 'scores': [36], 'are': [37, 164], 'aggregated': [38], 'and': [39, 72, 155, 173], 'by': [41, 62], 'only': [42], 'image-level': [43], 'labels,': [44], 'often': [46], 'fails': [47], 'to': [48, 129, 148, 191], 'locate': [49], 'boundaries': [51], 'precisely.': [52], 'In': [53, 95], 'paper,': [55], 'we': [56, 97], 'break': [57], 'through': [58], 'such': [59], 'restriction': [61], 'taking': [63], 'deeper': [65], 'look': [66], 'into': [67, 85], 'score': [69], 'aggregation': [70], 'stage': [71], 'propose': [73], 'Category-aware': [75], 'Spatial': [76], 'Constraint': [77], '(CSC)': [78], 'scheme': [79], 'for': [80], 'integrated': [84], 'weakly': [86, 182], 'in': [90, 158], 'an': [91, 106], 'end-to-end': [92], 'manner.': [94], 'particular,': [96], 'incorporate': [98], 'global': [100], 'shape': [101, 136], 'information': [102], 'of': [103, 137, 199], 'objects': [104], 'unsupervised': [107], 'constraint,': [108], 'inferred': [111], 'from': [112], 'build-in': [113], 'foreground-and-background': [114], 'cues,': [115], 'termed': [116], 'Category-specific': [117], 'Pixel': [118], 'Gradient': [119], '(CPG)': [120], 'maps.': [121], 'Specifically,': [122], 'each': [123, 140], 'weighted': [127], 'according': [128], 'how': [130], 'well': [131], 'it': [132], 'covers': [133], 'estimated': [135], 'objects.': [138], 'For': [139], 'category,': [141], 'multi-center': [143], 'regularization': [144], 'further': [146], 'introduced': [147], 'penalize': [149], 'violations': [151], 'between': [152], 'centers': [153], 'cluster': [154], 'high-score': [156], 'proposals': [157], 'given': [160], 'image.': [161], 'Extensive': [162], 'experiments': [163], 'done': [165], 'widely-used': [169], 'benchmark': [170], 'Pascal': [171], 'VOC': [172], 'COCO,': [174], 'shows': [176], 'that': [177], 'our': [178], 'approach': [179], 'significantly': [180], 'improves': [181], 'without': [186], 'adding': [187], 'new': [188], 'learnable': [189], 'parameters': [190], 'models': [194], 'nor': [195], 'changing': [196], 'structures': [198], 'CNNs.': [200]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2969764577', 'counts_by_year': [{'year': 2024, 'cited_by_count': 2}, {'year': 2023, 'cited_by_count': 5}, {'year': 2022, 'cited_by_count': 9}, {'year': 2021, 'cited_by_count': 14}, {'year': 2020, 'cited_by_count': 4}], 'updated_date': '2024-12-14T06:17:15.140183', 'created_date': '2019-08-29'}