Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2963367478', 'doi': 'https://doi.org/10.1109/icdm.2018.00035', 'title': 'Self-Attentive Sequential Recommendation', 'display_name': 'Self-Attentive Sequential Recommendation', 'publication_year': 2018, 'publication_date': '2018-11-01', 'ids': {'openalex': 'https://openalex.org/W2963367478', 'doi': 'https://doi.org/10.1109/icdm.2018.00035', 'mag': '2963367478'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/icdm.2018.00035', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363608061', 'display_name': '2021 IEEE International Conference on Data Mining (ICDM)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/1808.09781', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5090597599', 'display_name': 'Wang-Cheng Kang', 'orcid': 'https://orcid.org/0009-0006-8795-3665'}, 'institutions': [{'id': 'https://openalex.org/I36258959', 'display_name': 'University of California, San Diego', 'ror': 'https://ror.org/0168r3w48', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I36258959']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Wang-Cheng Kang', 'raw_affiliation_strings': ['University of California San Diego, La Jolla, CA, US'], 'affiliations': [{'raw_affiliation_string': 'University of California San Diego, La Jolla, CA, US', 'institution_ids': ['https://openalex.org/I36258959']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5021827617', 'display_name': 'Julian McAuley', 'orcid': 'https://orcid.org/0000-0003-0955-7588'}, 'institutions': [{'id': 'https://openalex.org/I36258959', 'display_name': 'University of California, San Diego', 'ror': 'https://ror.org/0168r3w48', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I36258959']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Julian McAuley', 'raw_affiliation_strings': ['University of California San Diego, La Jolla, CA, US'], 'affiliations': [{'raw_affiliation_string': 'University of California San Diego, La Jolla, CA, US', 'institution_ids': ['https://openalex.org/I36258959']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 72.833, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 1723, 'citation_normalized_percentile': {'value': 0.888561, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': '197', 'last_page': '206'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10203', 'display_name': 'Recommender Systems and Techniques', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10203', 'display_name': 'Recommender Systems and Techniques', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1710', 'display_name': 'Information Systems'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T13702', 'display_name': 'Machine Learning in Healthcare', 'score': 0.9874, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10775', 'display_name': 'Generative Adversarial Networks and Image Synthesis', 'score': 0.9871, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.44189316}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.85987663}, {'id': 'https://openalex.org/C147168706', 'wikidata': 'https://www.wikidata.org/wiki/Q1457734', 'display_name': 'Recurrent neural network', 'level': 3, 'score': 0.7405545}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.608565}, {'id': 'https://openalex.org/C557471498', 'wikidata': 'https://www.wikidata.org/wiki/Q554950', 'display_name': 'Recommender system', 'level': 2, 'score': 0.60245746}, {'id': 'https://openalex.org/C184337299', 'wikidata': 'https://www.wikidata.org/wiki/Q1437428', 'display_name': 'Semantics (computer science)', 'level': 2, 'score': 0.5689662}, {'id': 'https://openalex.org/C2779343474', 'wikidata': 'https://www.wikidata.org/wiki/Q3109175', 'display_name': 'Context (archaeology)', 'level': 2, 'score': 0.5395045}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.5110465}, {'id': 'https://openalex.org/C98763669', 'wikidata': 'https://www.wikidata.org/wiki/Q176645', 'display_name': 'Markov chain', 'level': 2, 'score': 0.5020304}, {'id': 'https://openalex.org/C23224414', 'wikidata': 'https://www.wikidata.org/wiki/Q176769', 'display_name': 'Hidden Markov model', 'level': 2, 'score': 0.46223125}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.44189316}, {'id': 'https://openalex.org/C159886148', 'wikidata': 'https://www.wikidata.org/wiki/Q176645', 'display_name': 'Markov process', 'level': 2, 'score': 0.43598995}, {'id': 'https://openalex.org/C50644808', 'wikidata': 'https://www.wikidata.org/wiki/Q192776', 'display_name': 'Artificial neural network', 'level': 2, 'score': 0.1915485}, {'id': 'https://openalex.org/C151730666', 'wikidata': 'https://www.wikidata.org/wiki/Q7205', 'display_name': 'Paleontology', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/icdm.2018.00035', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363608061', 'display_name': '2021 IEEE International Conference on Data Mining (ICDM)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1808.09781', 'pdf_url': 'https://arxiv.org/pdf/1808.09781', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1808.09781', 'pdf_url': 'https://arxiv.org/pdf/1808.09781', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 54, 'referenced_works': ['https://openalex.org/W1485147275', 'https://openalex.org/W1500188831', 'https://openalex.org/W1514535095', 'https://openalex.org/W1522301498', 'https://openalex.org/W1690919088', 'https://openalex.org/W1720514416', 'https://openalex.org/W1836465849', 'https://openalex.org/W1849277567', 'https://openalex.org/W1899504021', 'https://openalex.org/W1985854669', 'https://openalex.org/W1994389483', 'https://openalex.org/W2027731328', 'https://openalex.org/W2054141820', 'https://openalex.org/W2057763140', 'https://openalex.org/W2095705004', 'https://openalex.org/W2101409192', 'https://openalex.org/W2108920354', 'https://openalex.org/W2133564696', 'https://openalex.org/W2140310134', 'https://openalex.org/W2157881433', 'https://openalex.org/W2165949563', 'https://openalex.org/W2171279286', 'https://openalex.org/W2194775991', 'https://openalex.org/W2205235818', 'https://openalex.org/W2510184840', 'https://openalex.org/W2515144511', 'https://openalex.org/W2525778437', 'https://openalex.org/W2583674722', 'https://openalex.org/W2584643785', 'https://openalex.org/W2604438604', 'https://openalex.org/W2605350416', 'https://openalex.org/W2626454364', 'https://openalex.org/W2734755249', 'https://openalex.org/W2739273093', 'https://openalex.org/W2741249238', 'https://openalex.org/W2773640334', 'https://openalex.org/W2783272285', 'https://openalex.org/W2788997749', 'https://openalex.org/W2792764867', 'https://openalex.org/W2802023636', 'https://openalex.org/W2963403868', 'https://openalex.org/W2963883365', 'https://openalex.org/W2963900085', 'https://openalex.org/W2963991316', 'https://openalex.org/W2964052347', 'https://openalex.org/W2964121744', 'https://openalex.org/W2964296635', 'https://openalex.org/W2964308564', 'https://openalex.org/W2964316331', 'https://openalex.org/W2964352502', 'https://openalex.org/W3098867666', 'https://openalex.org/W3122507327', 'https://openalex.org/W4299286960', 'https://openalex.org/W4385245566'], 'related_works': ['https://openalex.org/W4390273403', 'https://openalex.org/W4386781444', 'https://openalex.org/W4225394202', 'https://openalex.org/W3197542405', 'https://openalex.org/W3092950680', 'https://openalex.org/W2364370872', 'https://openalex.org/W2294335174', 'https://openalex.org/W2150182025', 'https://openalex.org/W2097963413', 'https://openalex.org/W2053269318'], 'abstract_inverted_index': {'Sequential': [0], 'dynamics': [1], 'are': [2, 161], 'a': [3, 49, 119, 164], 'key': [4], 'feature': [5], 'of': [6, 17, 23, 59, 108, 203], 'many': [7], 'modern': [8], 'recommender': [9], 'systems,': [10], 'which': [11, 159], 'seek': [12], 'to': [13, 75, 112, 128, 157, 171], 'capture': [14, 30, 129], 'the': [15, 21, 57, 173, 198], "'context'": [16], "users'": [18], 'activities': [19], 'on': [20, 56, 144, 191, 212], 'basis': [22, 58], 'actions': [24, 147], 'they': [25], 'have': [26, 35], 'performed': [27], 'recently.': [28], 'To': [29], 'such': [31], 'patterns,': [32], 'two': [33, 115], 'approaches': [34], 'proliferated:': [36], 'Markov': [37, 45], 'Chains': [38, 46], '(MCs)': [39], 'and': [40, 168, 194, 226], 'Recurrent': [41], 'Neural': [42], 'Networks': [43], '(RNNs).': [44], 'assume': [47], 'that': [48, 125, 180], "user's": [50, 165], 'next': [51, 174], 'action': [52, 166], 'can': [53], 'be': [54, 76], 'predicted': [55], 'just': [60], 'their': [61], 'last': [62, 64], '(or': [63], 'few)': [65], 'actions,': [66], 'while': [67, 93], 'RNNs': [68, 94], 'in': [69, 84, 97, 230], 'principle': [70], 'allow': [71], 'for': [72], 'longer-term': [73], 'semantics': [74, 131], 'uncovered.': [77], 'Generally': [78], 'speaking,': [79], 'MC-based': [80], 'methods': [81], 'perform': [82, 95], 'best': [83], 'extremely': [85], 'sparse': [86, 193], 'datasets,': [87], 'where': [88, 100], 'model': [89, 102, 123, 199, 219], 'parsimony': [90], 'is': [91, 104, 111, 200], 'critical,': [92], 'better': [96], 'denser': [98], 'datasets': [99, 222], 'higher': [101], 'complexity': [103], 'affordable.': [105], 'The': [106], 'goal': [107], 'our': [109, 181, 218], 'work': [110], 'balance': [113], 'these': [114], 'goals,': [116], 'by': [117], 'proposing': [118], 'self-attention': [120], 'based': [121, 143], 'sequential': [122, 186], '(SASRec)': [124], 'allows': [126], 'us': [127], 'long-term': [130], '(like': [132, 148], 'an': [133, 137, 149, 201], 'RNN),': [134], 'but,': [135], 'using': [136], 'attention': [138, 213], 'mechanism,': [139], 'makes': [140], 'its': [141], 'predictions': [142], 'relatively': [145], 'few': [146], 'MC).': [150], 'At': [151], 'each': [152], 'time': [153], 'step,': [154], 'SASRec': [155], 'seeks': [156], 'identify': [158], 'items': [160], "'relevant'": [162], 'from': [163], 'history,': [167], 'use': [169], 'them': [170], 'predict': [172], 'item.': [175], 'Extensive': [176], 'empirical': [177], 'studies': [178], 'show': [179, 216], 'method': [182], 'outperforms': [183], 'various': [184, 224], 'state-of-the-art': [185], 'models': [187], '(including': [188], 'MC/CNN/RNN-based': [189], 'approaches)': [190], 'both': [192], 'dense': [195], 'datasets.': [196], 'Moreover,': [197], 'order': [202], 'magnitude': [204], 'more': [205], 'efficient': [206], 'than': [207], 'comparable': [208], 'CNN/RNN-based': [209], 'models.': [210], 'Visualizations': [211], 'weights': [214], 'also': [215], 'how': [217], 'adaptively': [220], 'handles': [221], 'with': [223], 'density,': [225], 'uncovers': [227], 'meaningful': [228], 'patterns': [229], 'activity': [231], 'sequences.': [232]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2963367478', 'counts_by_year': [{'year': 2024, 'cited_by_count': 389}, {'year': 2023, 'cited_by_count': 439}, {'year': 2022, 'cited_by_count': 317}, {'year': 2021, 'cited_by_count': 267}, {'year': 2020, 'cited_by_count': 154}, {'year': 2019, 'cited_by_count': 52}], 'updated_date': '2024-12-21T14:13:56.025037', 'created_date': '2019-07-30'}