Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2963053547', 'doi': 'https://doi.org/10.1109/cvpr.2018.00478', 'title': 'Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling', 'display_name': 'Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling', 'publication_year': 2018, 'publication_date': '2018-06-01', 'ids': {'openalex': 'https://openalex.org/W2963053547', 'doi': 'https://doi.org/10.1109/cvpr.2018.00478', 'mag': '2963053547'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/cvpr.2018.00478', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/1712.06760', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5078919707', 'display_name': 'Yiru Shen', 'orcid': 'https://orcid.org/0000-0002-7263-1632'}, 'institutions': [{'id': 'https://openalex.org/I8078737', 'display_name': 'Clemson University', 'ror': 'https://ror.org/037s24f05', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I8078737']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Yiru Shen', 'raw_affiliation_strings': ['Clemson University'], 'affiliations': [{'raw_affiliation_string': 'Clemson University', 'institution_ids': ['https://openalex.org/I8078737']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100699151', 'display_name': 'Chen Feng', 'orcid': 'https://orcid.org/0000-0003-3211-1576'}, 'institutions': [{'id': 'https://openalex.org/I4210133125', 'display_name': 'Mitsubishi Electric (Japan)', 'ror': 'https://ror.org/033y26782', 'country_code': 'JP', 'type': 'company', 'lineage': ['https://openalex.org/I1306287861', 'https://openalex.org/I4210133125']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Chen Feng', 'raw_affiliation_strings': ['Mitsubishi Electric Research Laboratories (MERL)'], 'affiliations': [{'raw_affiliation_string': 'Mitsubishi Electric Research Laboratories (MERL)', 'institution_ids': ['https://openalex.org/I4210133125']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5020994183', 'display_name': 'Yaoqing Yang', 'orcid': 'https://orcid.org/0000-0001-9908-5531'}, 'institutions': [{'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Yaoqing Yang', 'raw_affiliation_strings': ['Carnegie Mellon University'], 'affiliations': [{'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5016854114', 'display_name': 'Dong Tian', 'orcid': 'https://orcid.org/0000-0002-2310-0974'}, 'institutions': [{'id': 'https://openalex.org/I4210133125', 'display_name': 'Mitsubishi Electric (Japan)', 'ror': 'https://ror.org/033y26782', 'country_code': 'JP', 'type': 'company', 'lineage': ['https://openalex.org/I1306287861', 'https://openalex.org/I4210133125']}], 'countries': ['JP'], 'is_corresponding': False, 'raw_author_name': 'Dong Tian', 'raw_affiliation_strings': ['Mitsubishi Electric Research Laboratories (MERL)'], 'affiliations': [{'raw_affiliation_string': 'Mitsubishi Electric Research Laboratories (MERL)', 'institution_ids': ['https://openalex.org/I4210133125']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 3, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 554, 'citation_normalized_percentile': {'value': 0.999442, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': '4548', 'last_page': '4557'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11211', 'display_name': '3D Surveying and Cultural Heritage', 'score': 0.9955, 'subfield': {'id': 'https://openalex.org/subfields/1907', 'display_name': 'Geology'}, 'field': {'id': 'https://openalex.org/fields/19', 'display_name': 'Earth and Planetary Sciences'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11164', 'display_name': 'Remote Sensing and LiDAR Applications', 'score': 0.9926, 'subfield': {'id': 'https://openalex.org/subfields/2305', 'display_name': 'Environmental Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/kernel', 'display_name': 'Kernel (algebra)', 'score': 0.5878971}, {'id': 'https://openalex.org/keywords/graph-kernel', 'display_name': 'Graph kernel', 'score': 0.49585518}, {'id': 'https://openalex.org/keywords/pooling', 'display_name': 'Pooling', 'score': 0.48817736}, {'id': 'https://openalex.org/keywords/feature', 'display_name': 'Feature (linguistics)', 'score': 0.43275857}], 'concepts': [{'id': 'https://openalex.org/C131979681', 'wikidata': 'https://www.wikidata.org/wiki/Q1899648', 'display_name': 'Point cloud', 'level': 2, 'score': 0.7709968}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7295036}, {'id': 'https://openalex.org/C74193536', 'wikidata': 'https://www.wikidata.org/wiki/Q574844', 'display_name': 'Kernel (algebra)', 'level': 2, 'score': 0.5878971}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.567561}, {'id': 'https://openalex.org/C132525143', 'wikidata': 'https://www.wikidata.org/wiki/Q141488', 'display_name': 'Graph', 'level': 2, 'score': 0.5038015}, {'id': 'https://openalex.org/C100595998', 'wikidata': 'https://www.wikidata.org/wiki/Q11731931', 'display_name': 'Graph kernel', 'level': 5, 'score': 0.49585518}, {'id': 'https://openalex.org/C70437156', 'wikidata': 'https://www.wikidata.org/wiki/Q7228652', 'display_name': 'Pooling', 'level': 2, 'score': 0.48817736}, {'id': 'https://openalex.org/C2776401178', 'wikidata': 'https://www.wikidata.org/wiki/Q12050496', 'display_name': 'Feature (linguistics)', 'level': 2, 'score': 0.43275857}, {'id': 'https://openalex.org/C162319229', 'wikidata': 'https://www.wikidata.org/wiki/Q175263', 'display_name': 'Data structure', 'level': 2, 'score': 0.41282025}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.4095208}, {'id': 'https://openalex.org/C122280245', 'wikidata': 'https://www.wikidata.org/wiki/Q620622', 'display_name': 'Kernel method', 'level': 3, 'score': 0.3496399}, {'id': 'https://openalex.org/C80444323', 'wikidata': 'https://www.wikidata.org/wiki/Q2878974', 'display_name': 'Theoretical computer science', 'level': 1, 'score': 0.3449607}, {'id': 'https://openalex.org/C134517425', 'wikidata': 'https://www.wikidata.org/wiki/Q16000131', 'display_name': 'Kernel embedding of distributions', 'level': 4, 'score': 0.20626473}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.15403298}, {'id': 'https://openalex.org/C12267149', 'wikidata': 'https://www.wikidata.org/wiki/Q282453', 'display_name': 'Support vector machine', 'level': 2, 'score': 0.12791836}, {'id': 'https://openalex.org/C114614502', 'wikidata': 'https://www.wikidata.org/wiki/Q76592', 'display_name': 'Combinatorics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C199360897', 'wikidata': 'https://www.wikidata.org/wiki/Q9143', 'display_name': 'Programming language', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/cvpr.2018.00478', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1712.06760', 'pdf_url': 'https://arxiv.org/pdf/1712.06760', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1712.06760', 'pdf_url': 'https://arxiv.org/pdf/1712.06760', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'display_name': 'Sustainable cities and communities', 'score': 0.42, 'id': 'https://metadata.un.org/sdg/11'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 48, 'referenced_works': ['https://openalex.org/W1498318113', 'https://openalex.org/W1569530544', 'https://openalex.org/W1573751879', 'https://openalex.org/W1644641054', 'https://openalex.org/W1662382123', 'https://openalex.org/W1883517952', 'https://openalex.org/W1920022804', 'https://openalex.org/W1993846506', 'https://openalex.org/W2001424961', 'https://openalex.org/W2014425592', 'https://openalex.org/W2061820396', 'https://openalex.org/W2100816864', 'https://openalex.org/W2102402541', 'https://openalex.org/W2108402667', 'https://openalex.org/W2112796928', 'https://openalex.org/W2150190641', 'https://openalex.org/W2155893237', 'https://openalex.org/W2175812528', 'https://openalex.org/W2211722331', 'https://openalex.org/W2394951287', 'https://openalex.org/W2465015709', 'https://openalex.org/W2511691466', 'https://openalex.org/W2519887557', 'https://openalex.org/W2524838846', 'https://openalex.org/W2553307952', 'https://openalex.org/W2556802233', 'https://openalex.org/W2558460151', 'https://openalex.org/W2558748708', 'https://openalex.org/W2560609797', 'https://openalex.org/W2594519801', 'https://openalex.org/W2606202972', 'https://openalex.org/W2796426482', 'https://openalex.org/W2962731536', 'https://openalex.org/W2962928871', 'https://openalex.org/W2963021451', 'https://openalex.org/W2963084622', 'https://openalex.org/W2963121255', 'https://openalex.org/W2963984147', 'https://openalex.org/W2964015378', 'https://openalex.org/W2964027736', 'https://openalex.org/W2964113829', 'https://openalex.org/W2964145825', 'https://openalex.org/W2964311892', 'https://openalex.org/W2964321699', 'https://openalex.org/W3100220783', 'https://openalex.org/W3104141662', 'https://openalex.org/W637153065', 'https://openalex.org/W83360984'], 'related_works': ['https://openalex.org/W4401177601', 'https://openalex.org/W4285213554', 'https://openalex.org/W3099811568', 'https://openalex.org/W3044028388', 'https://openalex.org/W3008854474', 'https://openalex.org/W2574115973', 'https://openalex.org/W2098940859', 'https://openalex.org/W2078320823', 'https://openalex.org/W2043334680', 'https://openalex.org/W1515878412'], 'abstract_inverted_index': {'Unlike': [0], 'on': [1, 5, 33, 86, 151, 173], 'images,': [2, 98], 'semantic': [3, 61], 'learning': [4, 32], '3D': [6, 88, 109, 156], 'point': [7, 34, 136], 'clouds': [8], 'using': [9], 'a': [10, 44, 75, 94, 101, 105, 115, 132, 152], 'deep': [11], 'network': [12, 162], 'is': [13, 178], 'challenging': [14], 'due': [15], 'to': [16, 56, 71, 93, 114, 122], 'the': [17], 'naturally': [18], 'unordered': [19], 'data': [20, 119], 'structure.': [21], 'Among': [22], 'existing': [23], 'works,': [24], 'PointNet': [25, 73], 'has': [26], 'achieved': [27], 'promising': [28], 'results': [29], 'by': [30, 127, 147], 'directly': [31], 'sets.': [35], 'However,': [36], 'it': [37], 'does': [38], 'not': [39], 'take': [40], 'full': [41], 'advantage': [42], 'of': [43, 79, 107, 117], "point's": [45], 'local': [46, 80, 87, 143, 166], 'neighborhood': [47], 'that': [48, 111, 160], 'contains': [49], 'fine-grained': [50], 'structural': [51], 'information': [52, 167], 'which': [53], 'turns': [54], 'out': [55], 'be': [57], 'helpful': [58], 'towards': [59], 'better': [60, 171], 'learning.': [62], 'In': [63, 91], 'this': [64], 'regard,': [65], 'we': [66, 99], 'present': [67], 'two': [68], 'new': [69], 'operations': [70], 'improve': [72], 'with': [74], 'more': [76], 'efficient': [77], 'exploitation': [78], 'structures.': [81, 90], 'The': [82, 139], 'first': [83], 'one': [84, 141], 'focuses': [85], 'geometric': [89, 124], 'analogy': [92], 'convolution': [95], 'kernel': [96, 103, 128], 'for': [97, 135], 'define': [100], 'point-set': [102], 'as': [104], 'set': [106, 116], 'learnable': [108], 'points': [110, 120], 'jointly': [112], 'respond': [113], 'neighboring': [118], 'according': [121], 'their': [123], 'affinities': [125], 'measured': [126], 'correlation,': [129], 'adapted': [130], 'from': [131, 155], 'similar': [133], 'technique': [134], 'cloud': [137], 'registration.': [138], 'second': [140], 'exploits': [142], 'high-dimensional': [144], 'feature': [145, 149], 'structures': [146], 'recursive': [148], 'aggregation': [150], 'nearest-neighbor-graph': [153], 'computed': [154], 'positions.': [157], 'Experiments': [158], 'show': [159], 'our': [161], 'can': [163], 'efficiently': [164], 'capture': [165], 'and': [168], 'robustly': [169], 'achieve': [170], 'performances': [172], 'major': [174], 'datasets.': [175], 'Our': [176], 'code': [177], 'available': [179], 'at': [180], 'http://www.merl.com/research/license#KCNet.': [181]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2963053547', 'counts_by_year': [{'year': 2024, 'cited_by_count': 54}, {'year': 2023, 'cited_by_count': 61}, {'year': 2022, 'cited_by_count': 76}, {'year': 2021, 'cited_by_count': 127}, {'year': 2020, 'cited_by_count': 126}, {'year': 2019, 'cited_by_count': 95}, {'year': 2018, 'cited_by_count': 15}], 'updated_date': '2025-01-12T17:56:53.985028', 'created_date': '2019-07-30'}