Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2962843773', 'doi': 'https://doi.org/10.1109/iccv.2017.97', 'title': 'Revisiting Unreasonable Effectiveness of Data in Deep Learning Era', 'display_name': 'Revisiting Unreasonable Effectiveness of Data in Deep Learning Era', 'publication_year': 2017, 'publication_date': '2017-10-01', 'ids': {'openalex': 'https://openalex.org/W2962843773', 'doi': 'https://doi.org/10.1109/iccv.2017.97', 'mag': '2962843773'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/iccv.2017.97', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/1707.02968', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100722234', 'display_name': 'Chen Sun', 'orcid': 'https://orcid.org/0000-0001-8772-9627'}, 'institutions': [{'id': 'https://openalex.org/I1291425158', 'display_name': 'Google (United States)', 'ror': 'https://ror.org/00njsd438', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1291425158', 'https://openalex.org/I4210128969']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Chen Sun', 'raw_affiliation_strings': ['Google Research'], 'affiliations': [{'raw_affiliation_string': 'Google Research', 'institution_ids': ['https://openalex.org/I1291425158']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5101614443', 'display_name': 'Abhinav Shrivastava', 'orcid': 'https://orcid.org/0000-0001-8928-8554'}, 'institutions': [{'id': 'https://openalex.org/I1291425158', 'display_name': 'Google (United States)', 'ror': 'https://ror.org/00njsd438', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1291425158', 'https://openalex.org/I4210128969']}, {'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Abhinav Shrivastava', 'raw_affiliation_strings': ['Carnegie Mellon University', 'Google Research'], 'affiliations': [{'raw_affiliation_string': 'Google Research', 'institution_ids': ['https://openalex.org/I1291425158']}, {'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5024043349', 'display_name': 'Saurabh Singh', 'orcid': 'https://orcid.org/0000-0002-4403-6991'}, 'institutions': [{'id': 'https://openalex.org/I1291425158', 'display_name': 'Google (United States)', 'ror': 'https://ror.org/00njsd438', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1291425158', 'https://openalex.org/I4210128969']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Saurabh Singh', 'raw_affiliation_strings': ['Google Research'], 'affiliations': [{'raw_affiliation_string': 'Google Research', 'institution_ids': ['https://openalex.org/I1291425158']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5101761266', 'display_name': 'Abhinav Gupta', 'orcid': 'https://orcid.org/0000-0002-3646-2421'}, 'institutions': [{'id': 'https://openalex.org/I1291425158', 'display_name': 'Google (United States)', 'ror': 'https://ror.org/00njsd438', 'country_code': 'US', 'type': 'company', 'lineage': ['https://openalex.org/I1291425158', 'https://openalex.org/I4210128969']}, {'id': 'https://openalex.org/I74973139', 'display_name': 'Carnegie Mellon University', 'ror': 'https://ror.org/05x2bcf33', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I74973139']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Abhinav Gupta', 'raw_affiliation_strings': ['Carnegie Mellon University', 'Google Research'], 'affiliations': [{'raw_affiliation_string': 'Google Research', 'institution_ids': ['https://openalex.org/I1291425158']}, {'raw_affiliation_string': 'Carnegie Mellon University', 'institution_ids': ['https://openalex.org/I74973139']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 32.771, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 1969, 'citation_normalized_percentile': {'value': 0.999862, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10627', 'display_name': 'Advanced Image and Video Retrieval Techniques', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11307', 'display_name': 'Domain Adaptation and Few-Shot Learning', 'score': 0.9998, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/representation', 'display_name': 'Representation', 'score': 0.6380756}, {'id': 'https://openalex.org/keywords/external-data-representation', 'display_name': 'External Data Representation', 'score': 0.45785934}, {'id': 'https://openalex.org/keywords/training-set', 'display_name': 'Training set', 'score': 0.4331547}, {'id': 'https://openalex.org/keywords/feature-learning', 'display_name': 'Feature Learning', 'score': 0.41243076}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7855284}, {'id': 'https://openalex.org/C108583219', 'wikidata': 'https://www.wikidata.org/wiki/Q197536', 'display_name': 'Deep learning', 'level': 2, 'score': 0.7043969}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.702232}, {'id': 'https://openalex.org/C2776359362', 'wikidata': 'https://www.wikidata.org/wiki/Q2145286', 'display_name': 'Representation (politics)', 'level': 3, 'score': 0.6380756}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.58310086}, {'id': 'https://openalex.org/C2776151529', 'wikidata': 'https://www.wikidata.org/wiki/Q3045304', 'display_name': 'Object detection', 'level': 3, 'score': 0.57034606}, {'id': 'https://openalex.org/C89600930', 'wikidata': 'https://www.wikidata.org/wiki/Q1423946', 'display_name': 'Segmentation', 'level': 2, 'score': 0.53533185}, {'id': 'https://openalex.org/C116409475', 'wikidata': 'https://www.wikidata.org/wiki/Q1385056', 'display_name': 'External Data Representation', 'level': 2, 'score': 0.45785934}, {'id': 'https://openalex.org/C51632099', 'wikidata': 'https://www.wikidata.org/wiki/Q3985153', 'display_name': 'Training set', 'level': 2, 'score': 0.4331547}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.43152103}, {'id': 'https://openalex.org/C59404180', 'wikidata': 'https://www.wikidata.org/wiki/Q17013334', 'display_name': 'Feature learning', 'level': 2, 'score': 0.41243076}, {'id': 'https://openalex.org/C94625758', 'wikidata': 'https://www.wikidata.org/wiki/Q7163', 'display_name': 'Politics', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C17744445', 'wikidata': 'https://www.wikidata.org/wiki/Q36442', 'display_name': 'Political science', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C199539241', 'wikidata': 'https://www.wikidata.org/wiki/Q7748', 'display_name': 'Law', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/iccv.2017.97', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1707.02968', 'pdf_url': 'https://arxiv.org/pdf/1707.02968', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1707.02968', 'pdf_url': 'https://arxiv.org/pdf/1707.02968', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 53, 'referenced_works': ['https://openalex.org/W1544092585', 'https://openalex.org/W1686810756', 'https://openalex.org/W1821462560', 'https://openalex.org/W1836465849', 'https://openalex.org/W1861492603', 'https://openalex.org/W1964763677', 'https://openalex.org/W1977500159', 'https://openalex.org/W1996140089', 'https://openalex.org/W2031342017', 'https://openalex.org/W2031489346', 'https://openalex.org/W203719604', 'https://openalex.org/W2081613070', 'https://openalex.org/W2095242101', 'https://openalex.org/W2097117768', 'https://openalex.org/W2100031962', 'https://openalex.org/W2102605133', 'https://openalex.org/W2103018059', 'https://openalex.org/W2107250100', 'https://openalex.org/W2117539524', 'https://openalex.org/W2124219775', 'https://openalex.org/W2144794286', 'https://openalex.org/W2156303437', 'https://openalex.org/W2160921898', 'https://openalex.org/W2161381512', 'https://openalex.org/W2163605009', 'https://openalex.org/W2168231600', 'https://openalex.org/W219040644', 'https://openalex.org/W2194775991', 'https://openalex.org/W2201912979', 'https://openalex.org/W2274287116', 'https://openalex.org/W2284646714', 'https://openalex.org/W2287418003', 'https://openalex.org/W2338684808', 'https://openalex.org/W2412320034', 'https://openalex.org/W2412782625', 'https://openalex.org/W2510153535', 'https://openalex.org/W2520707650', 'https://openalex.org/W2531409750', 'https://openalex.org/W2557728737', 'https://openalex.org/W2559085405', 'https://openalex.org/W2578797046', 'https://openalex.org/W2613718673', 'https://openalex.org/W2949099979', 'https://openalex.org/W2949117887', 'https://openalex.org/W2949947856', 'https://openalex.org/W2951638509', 'https://openalex.org/W2952865063', 'https://openalex.org/W2953106684', 'https://openalex.org/W2963826370', 'https://openalex.org/W343636949', 'https://openalex.org/W4294568686', 'https://openalex.org/W4295224294', 'https://openalex.org/W4300939921'], 'related_works': ['https://openalex.org/W4254103348', 'https://openalex.org/W3134504629', 'https://openalex.org/W3048601286', 'https://openalex.org/W3034745255', 'https://openalex.org/W3000197790', 'https://openalex.org/W2970686063', 'https://openalex.org/W2965925734', 'https://openalex.org/W2952512863', 'https://openalex.org/W2949096641', 'https://openalex.org/W2938696877'], 'abstract_inverted_index': {'The': [0], 'success': [1], 'of': [2, 23, 37, 43, 48, 81, 113, 150, 166], 'deep': [3, 91], 'learning': [4, 159], 'in': [5, 34, 224], 'vision': [6, 115, 143, 174, 193, 213], 'can': [7, 169], 'be': [8], 'attributed': [9], 'to:': [10], '(a)': [11], 'models': [12, 39], 'with': [13], 'high': [14], 'capacity;': [15], '(b)': [16], 'increased': [17], 'computational': [18, 41], 'power;': [19], 'and': [20, 40, 89, 202, 220], '(c)': [21], 'availability': [22], 'large-scale': [24], 'labeled': [25], 'data.': [26], 'Since': [27], '2012,': [28], 'there': [29], 'have': [30], 'been': [31], 'significant': [32], 'advances': [33], 'representation': [35, 125, 158], 'capabilities': [36, 42], 'the': [38, 46, 49, 62, 79, 84, 95, 111, 140, 218], 'GPUs.': [44], 'But': [45], 'size': [47, 64], 'biggest': [50], 'dataset': [51, 63, 97], 'has': [52, 99], 'surprisingly': [53], 'remained': [54], 'constant.': [55], 'What': [56], 'will': [57], 'happen': [58], 'if': [59, 119], 'we': [60, 108, 137, 155, 186], 'increase': [61], 'by': [65, 176], '10': [66], '×': [67, 70], 'or': [68], '100': [69], '?': [71], 'This': [72], 'paper': [73, 128], 'takes': [74], 'a': [75, 164, 179], 'step': [76], 'towards': [77], 'clearing': [78], 'clouds': [80], 'mystery': [82], 'surrounding': [83], 'relationship': [85], 'between': [86], '‘enormous': [87], 'data’': [88], 'visual': [90], 'learning.': [92, 126], 'By': [93], 'exploiting': [94], 'JFT-300M': [96], 'which': [98], 'more': [100], 'than': [101], '375M': [102], 'noisy': [103], 'labels': [104], 'for': [105, 124, 191], '300M': [106], 'images,': [107], 'investigate': [109], 'how': [110], 'performance': [112, 141, 171], 'current': [114], 'tasks': [116, 144, 175, 194], 'would': [117], 'change': [118], 'this': [120, 211], 'data': [121, 152, 219], 'was': [122], 'used': [123], 'Our': [127, 206], 'delivers': [129], 'some': [130, 133], 'surprising': [131], '(and': [132], 'expected)': [134], 'findings.': [135], 'First,': [136], 'find': [138], 'that': [139, 157, 210], 'on': [142, 148, 172], 'increases': [145], 'logarithmically': [146], 'based': [147], 'volume': [149], 'training': [151, 178], 'size.': [153], 'Second,': [154], 'show': [156], '(or': [160], 'pre-training)': [161], 'still': [162], 'holds': [163], 'lot': [165], 'promise.': [167], 'One': [168], 'improve': [170], 'many': [173], 'just': [177], 'better': [180], 'base': [181], 'model.': [182], 'Finally,': [183], 'as': [184], 'expected,': [185], 'present': [187], 'new': [188], 'state-of-the-art': [189], 'results': [190], 'different': [192], 'including': [195], 'image': [196], 'classification,': [197], 'object': [198], 'detection,': [199], 'semantic': [200], 'segmentation': [201], 'human': [203], 'pose': [204], 'estimation.': [205], 'sincere': [207], 'hope': [208], 'is': [209], 'inspires': [212], 'community': [214], 'to': [215], 'not': [216], 'undervalue': [217], 'develop': [221], 'collective': [222], 'efforts': [223], 'building': [225], 'larger': [226], 'datasets.': [227]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2962843773', 'counts_by_year': [{'year': 2024, 'cited_by_count': 238}, {'year': 2023, 'cited_by_count': 353}, {'year': 2022, 'cited_by_count': 376}, {'year': 2021, 'cited_by_count': 405}, {'year': 2020, 'cited_by_count': 257}, {'year': 2019, 'cited_by_count': 175}, {'year': 2018, 'cited_by_count': 97}, {'year': 2017, 'cited_by_count': 14}], 'updated_date': '2024-12-21T09:15:57.631928', 'created_date': '2019-07-30'}