Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2958374823', 'doi': 'https://doi.org/10.1109/isass.2019.8757761', 'title': 'The Characteristics of Kemel and Kemel-based Learning', 'display_name': 'The Characteristics of Kemel and Kemel-based Learning', 'publication_year': 2019, 'publication_date': '2019-05-01', 'ids': {'openalex': 'https://openalex.org/W2958374823', 'doi': 'https://doi.org/10.1109/isass.2019.8757761', 'mag': '2958374823'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/isass.2019.8757761', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5046339692', 'display_name': 'Fuxiao Tan', 'orcid': 'https://orcid.org/0000-0003-0520-3678'}, 'institutions': [{'id': 'https://openalex.org/I96733725', 'display_name': 'Shanghai Maritime University', 'ror': 'https://ror.org/04z7qrj66', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I96733725']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Fuxiao Tan', 'raw_affiliation_strings': ['School of Information Engineering, Shanghai Maritime University, China'], 'affiliations': [{'raw_affiliation_string': 'School of Information Engineering, Shanghai Maritime University, China', 'institution_ids': ['https://openalex.org/I96733725']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5101744803', 'display_name': 'Dezhi Han', 'orcid': 'https://orcid.org/0000-0001-8861-5461'}, 'institutions': [{'id': 'https://openalex.org/I96733725', 'display_name': 'Shanghai Maritime University', 'ror': 'https://ror.org/04z7qrj66', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I96733725']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Dezhi Han', 'raw_affiliation_strings': ['School of Information Engineering, Shanghai Maritime University, China'], 'affiliations': [{'raw_affiliation_string': 'School of Information Engineering, Shanghai Maritime University, China', 'institution_ids': ['https://openalex.org/I96733725']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.0, 'has_fulltext': False, 'cited_by_count': 0, 'citation_normalized_percentile': {'value': 0.0, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 0, 'max': 61}, 'biblio': {'volume': None, 'issue': None, 'first_page': '406', 'last_page': '411'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10320', 'display_name': 'Neural Networks and Applications', 'score': 0.9991, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10320', 'display_name': 'Neural Networks and Applications', 'score': 0.9991, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10057', 'display_name': 'Face and Expression Recognition', 'score': 0.9987, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11447', 'display_name': 'Blind Source Separation Techniques', 'score': 0.9974, 'subfield': {'id': 'https://openalex.org/subfields/1711', 'display_name': 'Signal Processing'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/string-kernel', 'display_name': 'String kernel', 'score': 0.74797726}, {'id': 'https://openalex.org/keywords/kernel', 'display_name': 'Kernel (algebra)', 'score': 0.673918}, {'id': 'https://openalex.org/keywords/tree-kernel', 'display_name': 'Tree kernel', 'score': 0.56452006}, {'id': 'https://openalex.org/keywords/feature-vector', 'display_name': 'Feature vector', 'score': 0.4712969}, {'id': 'https://openalex.org/keywords/inner-product-space', 'display_name': 'Inner product space', 'score': 0.41369575}], 'concepts': [{'id': 'https://openalex.org/C134517425', 'wikidata': 'https://www.wikidata.org/wiki/Q16000131', 'display_name': 'Kernel embedding of distributions', 'level': 4, 'score': 0.82911265}, {'id': 'https://openalex.org/C75866337', 'wikidata': 'https://www.wikidata.org/wiki/Q7280263', 'display_name': 'Radial basis function kernel', 'level': 4, 'score': 0.827225}, {'id': 'https://openalex.org/C55851704', 'wikidata': 'https://www.wikidata.org/wiki/Q7623983', 'display_name': 'String kernel', 'level': 5, 'score': 0.74797726}, {'id': 'https://openalex.org/C160446489', 'wikidata': 'https://www.wikidata.org/wiki/Q7226642', 'display_name': 'Polynomial kernel', 'level': 4, 'score': 0.7473796}, {'id': 'https://openalex.org/C182335926', 'wikidata': 'https://www.wikidata.org/wiki/Q17093020', 'display_name': 'Kernel principal component analysis', 'level': 4, 'score': 0.7247158}, {'id': 'https://openalex.org/C122280245', 'wikidata': 'https://www.wikidata.org/wiki/Q620622', 'display_name': 'Kernel method', 'level': 3, 'score': 0.6977668}, {'id': 'https://openalex.org/C74193536', 'wikidata': 'https://www.wikidata.org/wiki/Q574844', 'display_name': 'Kernel (algebra)', 'level': 2, 'score': 0.673918}, {'id': 'https://openalex.org/C195699287', 'wikidata': 'https://www.wikidata.org/wiki/Q7915722', 'display_name': 'Variable kernel density estimation', 'level': 4, 'score': 0.6667818}, {'id': 'https://openalex.org/C140417398', 'wikidata': 'https://www.wikidata.org/wiki/Q16933942', 'display_name': 'Tree kernel', 'level': 5, 'score': 0.56452006}, {'id': 'https://openalex.org/C7218915', 'wikidata': 'https://www.wikidata.org/wiki/Q1054475', 'display_name': 'Gaussian function', 'level': 3, 'score': 0.55672675}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.5459905}, {'id': 'https://openalex.org/C80884492', 'wikidata': 'https://www.wikidata.org/wiki/Q3345678', 'display_name': 'Reproducing kernel Hilbert space', 'level': 3, 'score': 0.5455593}, {'id': 'https://openalex.org/C83665646', 'wikidata': 'https://www.wikidata.org/wiki/Q42139305', 'display_name': 'Feature vector', 'level': 2, 'score': 0.4712969}, {'id': 'https://openalex.org/C33676613', 'wikidata': 'https://www.wikidata.org/wiki/Q13415176', 'display_name': 'Dimension (graph theory)', 'level': 2, 'score': 0.4526243}, {'id': 'https://openalex.org/C145828037', 'wikidata': 'https://www.wikidata.org/wiki/Q17086219', 'display_name': 'Least squares support vector machine', 'level': 3, 'score': 0.42069}, {'id': 'https://openalex.org/C91855343', 'wikidata': 'https://www.wikidata.org/wiki/Q214159', 'display_name': 'Inner product space', 'level': 2, 'score': 0.41369575}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.40314364}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.3964987}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.36960703}, {'id': 'https://openalex.org/C12267149', 'wikidata': 'https://www.wikidata.org/wiki/Q282453', 'display_name': 'Support vector machine', 'level': 2, 'score': 0.30086535}, {'id': 'https://openalex.org/C163716315', 'wikidata': 'https://www.wikidata.org/wiki/Q901177', 'display_name': 'Gaussian', 'level': 2, 'score': 0.20115146}, {'id': 'https://openalex.org/C118615104', 'wikidata': 'https://www.wikidata.org/wiki/Q121416', 'display_name': 'Discrete mathematics', 'level': 1, 'score': 0.1291132}, {'id': 'https://openalex.org/C62799726', 'wikidata': 'https://www.wikidata.org/wiki/Q190056', 'display_name': 'Hilbert space', 'level': 2, 'score': 0.12070426}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.11022535}, {'id': 'https://openalex.org/C202444582', 'wikidata': 'https://www.wikidata.org/wiki/Q837863', 'display_name': 'Pure mathematics', 'level': 1, 'score': 0.0823476}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/isass.2019.8757761', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 19, 'referenced_works': ['https://openalex.org/W1986078872', 'https://openalex.org/W2033381780', 'https://openalex.org/W2108995755', 'https://openalex.org/W2118556122', 'https://openalex.org/W2127332912', 'https://openalex.org/W2132351269', 'https://openalex.org/W2139320579', 'https://openalex.org/W2148603752', 'https://openalex.org/W2150621701', 'https://openalex.org/W2153290280', 'https://openalex.org/W2235526797', 'https://openalex.org/W2481926318', 'https://openalex.org/W2486387808', 'https://openalex.org/W2540093921', 'https://openalex.org/W2754149389', 'https://openalex.org/W2963527399', 'https://openalex.org/W3144619878', 'https://openalex.org/W4206686222', 'https://openalex.org/W4251987227'], 'related_works': ['https://openalex.org/W4294351650', 'https://openalex.org/W4291669689', 'https://openalex.org/W3100948281', 'https://openalex.org/W3013206934', 'https://openalex.org/W2130792056', 'https://openalex.org/W2090782076', 'https://openalex.org/W2071590642', 'https://openalex.org/W1984421104', 'https://openalex.org/W1983263273', 'https://openalex.org/W1836142315'], 'abstract_inverted_index': {'In': [0, 167, 222], 'the': [1, 9, 17, 30, 33, 41, 62, 66, 70, 73, 87, 98, 103, 107, 147, 153, 156, 164, 170, 174, 180, 184, 207, 228, 239, 250, 253, 261], 'application': [2], 'of': [3, 61, 64, 69, 86, 102, 130, 138, 152, 155, 173, 183, 195, 231, 244, 252, 255], 'Support': [4], 'Vector': [5], 'Machines': [6], '(SVM),': [7], 'if': [8], 'data': [10, 31], 'points': [11], 'are': [12], 'not': [13, 202], 'linearly': [14], 'separable': [15], 'in': [16, 72, 106, 141], 'original': [18], 'space,': [19, 35], 'it': [20, 53, 200], 'is': [21, 45, 54, 79, 90, 110, 118, 150, 189, 198, 247, 264], 'desirable': [22], 'to': [23, 28, 56, 92, 122, 133, 204, 216], 'find': [24, 57], 'a': [25, 58, 111, 218], 'mapping': [26, 140, 211], 'function': [27, 59, 78, 89, 105, 132, 161, 182, 233, 258], 'map': [29], 'into': [32], 'high-dimensional': [34, 48, 74, 157], 'and': [36, 210, 234], 'then': [37], 'classify': [38], 'it.': [39], 'However,': [40], 'mapped': [42], 'target': [43], 'space': [44, 109, 209], 'often': [46], 'very': [47], 'or': [49], 'even': [50], 'infinite-dimensional,': [51], 'so': [52, 145], 'necessary': [55], 'instead': [60], 'operation': [63], 'finding': [65], 'inner': [67, 171], 'product': [68, 172], 'vector': [71, 175], 'space.': [75, 159], 'Thus,': [76], 'this': [77, 223, 237], 'named': [80], 'as': [81], 'kernel': [82, 88, 104, 116, 131, 181, 191, 196, 220, 232, 246, 257], 'function.': [83, 221], 'The': [84, 193], 'selection': [85, 254], 'required': [91], 'satisfy': [93], "Mercer's": [94], 'theorem,': [95], 'that': [96, 146, 199], 'is,': [97], 'arbitrary': [99], 'Gram': [100], 'matrix': [101], 'sample': [108], 'semi-positive': [112], 'definite': [113], 'matrix.': [114], 'Furthermore,': [115], 'method': [117], 'also': [119], 'an': [120], 'approach': [121], 'achieve': [123], 'efficient': [124], 'calculation.': [125], 'It': [126], 'can': [127, 176], 'make': [128], 'use': [129], 'carry': [134], 'out': [135], 'synchronous': [136], 'computation': [137], 'nonlinear': [139], 'linear': [142], 'learning': [143, 242, 262], 'machine,': [144], 'computational': [148], 'complexity': [149], 'independent': [151], 'dimension': [154], 'feature': [158, 208], 'Kernel': [160], 'subtly': [162], 'solves': [163], 'above': [165], 'problem.': [166], 'high-': [168], 'dimension,': [169], 'be': [177], 'calculated': [178], 'by': [179, 266], 'low-dimensional': [185], 'point.': [186], 'This': [187], 'technique': [188], 'called': [190], 'trick.': [192], 'advantage': [194], 'trick': [197], 'does': [201], 'need': [203, 215], 'explicitly': [205], 'define': [206], 'function,': [212], 'but': [213], 'only': [214], 'select': [217], 'suitable': [219], 'paper,': [224], 'we': [225], 'first': [226], 'introduce': [227], 'basic': [229], 'definitions': [230], 'RKHS.': [235], 'On': [236], 'basis,': [238], 'least': [240], 'squares': [241], 'problem': [243], 'Gaussian': [245, 256], 'studied.': [248], 'Finally,': [249], 'influence': [251], 'parameters': [259], 'on': [260], 'algorithm': [263], 'verified': [265], 'computer': [267], 'simulation.': [268]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2958374823', 'counts_by_year': [], 'updated_date': '2024-12-07T08:52:55.057429', 'created_date': '2019-07-23'}