Title: Witten-Hodge theory on manifolds with boundary and equivariant cohomology
Abstract:We consider a compact, oriented, smooth Riemannian manifold $M$ (with or without boundary) and we suppose $G$ is a torus acting by isometries on $M$. Given $X$ in the Lie algebra and corresponding vec...We consider a compact, oriented, smooth Riemannian manifold $M$ (with or without boundary) and we suppose $G$ is a torus acting by isometries on $M$. Given $X$ in the Lie algebra and corresponding vector field $X_M$ on $M$, one defines Witten's inhomogeneous coboundary operator $d_{X_M} = d+\iota_{X_M}: \Omega_G^\pm \to\Omega_G^\mp$ (even/odd invariant forms on $M$) and its adjoint $\delta_{X_M}$. In the 1980s Witten showed that the resulting cohomology classes have $X_M$-harmonic representatives (forms in the null space of $\Delta_{X_M} = (d_{X_M}+\delta_{X_M})^2$), and the cohomology groups are isomorphic to the ordinary de Rham cohomology groups of the set $N(X_M)$ of zeros of $X_M$. Our principal purpose is to extend these results to manifolds with boundary. In particular, we define relative (to the boundary) and absolute versions of the $X_M$-cohomology and show the classes have representative $X_M$-harmonic fields with appropriate boundary conditions. To do this we present the relevant version of the Hodge-Morrey-Friedrichs decomposition theorem for invariant forms in terms of the operators $d_{X_M}$ and $\delta_{X_M}$. We also elucidate the connection between the $X_M$-cohomology groups and the relative and absolute equivariant cohomology, following work of Atiyah and Bott. This connection is then exploited to show that every harmonic field with appropriate boundary conditions on $N(X_M)$ has a unique $X_M$-harmonic field on $M$, with corresponding boundary conditions. Finally, we define the $X_M$-Poincare duality angles between the interior subspaces of $X_M$-harmonic fields on $M$ with appropriate boundary conditions, following recent work of DeTurck and Gluck.Read More
Publication Year: 2010
Publication Date: 2010-04-15
Language: en
Type: preprint
Access and Citation
Cited By Count: 2
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot