Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2949708697', 'doi': 'https://doi.org/10.1109/cvpr.2019.00086', 'title': 'PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud', 'display_name': 'PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud', 'publication_year': 2019, 'publication_date': '2019-06-01', 'ids': {'openalex': 'https://openalex.org/W2949708697', 'doi': 'https://doi.org/10.1109/cvpr.2019.00086', 'mag': '2949708697'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/cvpr.2019.00086', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607701', 'display_name': '2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'preprint', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://arxiv.org/pdf/1812.04244', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5083443210', 'display_name': 'Shaoshuai Shi', 'orcid': 'https://orcid.org/0000-0003-2558-181X'}, 'institutions': [{'id': 'https://openalex.org/I177725633', 'display_name': 'Chinese University of Hong Kong', 'ror': 'https://ror.org/00t33hh48', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I177725633']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Shaoshuai Shi', 'raw_affiliation_strings': ['The Chinese University of Hong Kong'], 'affiliations': [{'raw_affiliation_string': 'The Chinese University of Hong Kong', 'institution_ids': ['https://openalex.org/I177725633']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5100444820', 'display_name': 'Xiaogang Wang', 'orcid': 'https://orcid.org/0000-0002-7929-5889'}, 'institutions': [{'id': 'https://openalex.org/I177725633', 'display_name': 'Chinese University of Hong Kong', 'ror': 'https://ror.org/00t33hh48', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I177725633']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Xiaogang Wang', 'raw_affiliation_strings': ['The Chinese University of Hong Kong'], 'affiliations': [{'raw_affiliation_string': 'The Chinese University of Hong Kong', 'institution_ids': ['https://openalex.org/I177725633']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5100732450', 'display_name': 'Hongsheng Li', 'orcid': 'https://orcid.org/0000-0002-2664-7975'}, 'institutions': [{'id': 'https://openalex.org/I177725633', 'display_name': 'Chinese University of Hong Kong', 'ror': 'https://ror.org/00t33hh48', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I177725633']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Hongsheng Li', 'raw_affiliation_strings': ['The Chinese University of Hong Kong'], 'affiliations': [{'raw_affiliation_string': 'The Chinese University of Hong Kong', 'institution_ids': ['https://openalex.org/I177725633']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': False, 'cited_by_count': 2337, 'citation_normalized_percentile': {'value': 0.999495, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': None, 'issue': None, 'first_page': '770', 'last_page': '779'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9989, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10719', 'display_name': '3D Shape Modeling and Analysis', 'score': 0.9989, 'subfield': {'id': 'https://openalex.org/subfields/2206', 'display_name': 'Computational Mechanics'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11211', 'display_name': '3D Surveying and Cultural Heritage', 'score': 0.9982, 'subfield': {'id': 'https://openalex.org/subfields/1907', 'display_name': 'Geology'}, 'field': {'id': 'https://openalex.org/fields/19', 'display_name': 'Earth and Planetary Sciences'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10036', 'display_name': 'Advanced Neural Network Applications', 'score': 0.9982, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/benchmark', 'display_name': 'Benchmark (surveying)', 'score': 0.66753006}, {'id': 'https://openalex.org/keywords/rgb-color-model', 'display_name': 'RGB color model', 'score': 0.4680134}], 'concepts': [{'id': 'https://openalex.org/C131979681', 'wikidata': 'https://www.wikidata.org/wiki/Q1899648', 'display_name': 'Point cloud', 'level': 2, 'score': 0.9118588}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.80924165}, {'id': 'https://openalex.org/C185798385', 'wikidata': 'https://www.wikidata.org/wiki/Q1161707', 'display_name': 'Benchmark (surveying)', 'level': 2, 'score': 0.66753006}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.64031196}, {'id': 'https://openalex.org/C2776151529', 'wikidata': 'https://www.wikidata.org/wiki/Q3045304', 'display_name': 'Object detection', 'level': 3, 'score': 0.5686058}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.50680906}, {'id': 'https://openalex.org/C28719098', 'wikidata': 'https://www.wikidata.org/wiki/Q44946', 'display_name': 'Point (geometry)', 'level': 2, 'score': 0.49684456}, {'id': 'https://openalex.org/C2781238097', 'wikidata': 'https://www.wikidata.org/wiki/Q175026', 'display_name': 'Object (grammar)', 'level': 2, 'score': 0.47982717}, {'id': 'https://openalex.org/C82990744', 'wikidata': 'https://www.wikidata.org/wiki/Q166194', 'display_name': 'RGB color model', 'level': 2, 'score': 0.4680134}, {'id': 'https://openalex.org/C79974875', 'wikidata': 'https://www.wikidata.org/wiki/Q483639', 'display_name': 'Cloud computing', 'level': 2, 'score': 0.45309833}, {'id': 'https://openalex.org/C108583219', 'wikidata': 'https://www.wikidata.org/wiki/Q197536', 'display_name': 'Deep learning', 'level': 2, 'score': 0.41544163}, {'id': 'https://openalex.org/C124101348', 'wikidata': 'https://www.wikidata.org/wiki/Q172491', 'display_name': 'Data mining', 'level': 1, 'score': 0.33831042}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.33262387}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.09542295}, {'id': 'https://openalex.org/C205649164', 'wikidata': 'https://www.wikidata.org/wiki/Q1071', 'display_name': 'Geography', 'level': 0, 'score': 0.08290011}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C13280743', 'wikidata': 'https://www.wikidata.org/wiki/Q131089', 'display_name': 'Geodesy', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C111919701', 'wikidata': 'https://www.wikidata.org/wiki/Q9135', 'display_name': 'Operating system', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/cvpr.2019.00086', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4363607701', 'display_name': '2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'conference'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1812.04244', 'pdf_url': 'https://arxiv.org/pdf/1812.04244', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://arxiv.org/abs/1812.04244', 'pdf_url': 'https://arxiv.org/pdf/1812.04244', 'source': {'id': 'https://openalex.org/S4306400194', 'display_name': 'arXiv (Cornell University)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I205783295', 'host_organization_name': 'Cornell University', 'host_organization_lineage': ['https://openalex.org/I205783295'], 'host_organization_lineage_names': ['Cornell University'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'submittedVersion', 'is_accepted': False, 'is_published': False}, 'sustainable_development_goals': [{'display_name': 'Sustainable cities and communities', 'id': 'https://metadata.un.org/sdg/11', 'score': 0.68}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 51, 'referenced_works': ['https://openalex.org/W1495267108', 'https://openalex.org/W1536680647', 'https://openalex.org/W158943247', 'https://openalex.org/W1644641054', 'https://openalex.org/W1949285675', 'https://openalex.org/W1958328135', 'https://openalex.org/W2011792403', 'https://openalex.org/W2150066425', 'https://openalex.org/W2184393491', 'https://openalex.org/W2211722331', 'https://openalex.org/W2216125271', 'https://openalex.org/W2229637417', 'https://openalex.org/W2468368736', 'https://openalex.org/W2555618208', 'https://openalex.org/W2556802233', 'https://openalex.org/W2557465155', 'https://openalex.org/W2560544142', 'https://openalex.org/W2560609797', 'https://openalex.org/W2565639579', 'https://openalex.org/W2570343428', 'https://openalex.org/W2605189827', 'https://openalex.org/W2769205412', 'https://openalex.org/W2769571673', 'https://openalex.org/W2773077099', 'https://openalex.org/W2774996270', 'https://openalex.org/W2777795072', 'https://openalex.org/W2798462325', 'https://openalex.org/W2798965597', 'https://openalex.org/W2810641456', 'https://openalex.org/W2884561390', 'https://openalex.org/W2894705404', 'https://openalex.org/W2897529137', 'https://openalex.org/W2899302124', 'https://openalex.org/W2913859453', 'https://openalex.org/W2924050502', 'https://openalex.org/W2962720782', 'https://openalex.org/W2962731536', 'https://openalex.org/W2962888833', 'https://openalex.org/W2963037989', 'https://openalex.org/W2963121255', 'https://openalex.org/W2963150697', 'https://openalex.org/W2963182550', 'https://openalex.org/W2963400571', 'https://openalex.org/W2963517242', 'https://openalex.org/W2963727135', 'https://openalex.org/W2964062501', 'https://openalex.org/W2964166085', 'https://openalex.org/W3106250896', 'https://openalex.org/W3117804044', 'https://openalex.org/W4293584584', 'https://openalex.org/W639708223'], 'related_works': ['https://openalex.org/W4390721878', 'https://openalex.org/W4321353415', 'https://openalex.org/W4320729701', 'https://openalex.org/W4254103348', 'https://openalex.org/W3210378990', 'https://openalex.org/W3034745255', 'https://openalex.org/W2970686063', 'https://openalex.org/W2949096641', 'https://openalex.org/W2745001401', 'https://openalex.org/W2378211422'], 'abstract_inverted_index': {'In': [0], 'this': [1], 'paper,': [2], 'we': [3], 'propose': [4], 'PointRCNN': [5], 'for': [6, 23, 31, 129], '3D': [7, 26, 74, 140], 'object': [8], 'detection': [9, 42, 141], 'from': [10, 48, 76], 'raw': [11], 'point': [12, 53, 77, 86, 125, 160], 'cloud.': [13], 'The': [14, 97, 164], 'whole': [15, 90], 'framework': [16], 'is': [17, 117, 166], 'composed': [18], 'of': [19, 45, 72, 88, 104, 123, 143], 'two': [20], 'stages:': [21], 'stage-1': [22, 65, 128], 'the': [24, 35, 40, 85, 89, 101, 139], 'bottom-up': [25, 81], 'proposal': [27, 106], 'generation': [28], 'and': [29, 95, 133], 'stage-2': [30, 98], 'refining': [32], 'proposals': [33, 47, 75], 'in': [34, 79, 127], 'canonical': [36, 108], 'coordinates': [37, 109], 'to': [38, 55, 107, 110], 'obtain': [39], 'final': [41], 'results.': [43], 'Instead': [44], 'generating': [46], 'RGB': [49], 'image': [50], 'or': [51, 58], 'projecting': [52], 'cloud': [54, 78, 87, 161], "bird's": [56], 'view': [57], 'voxels': [59], 'as': [60, 162], 'previous': [61], 'methods': [62, 153], 'do,': [63], 'our': [64, 148], 'sub-network': [66, 99], 'directly': [67], 'generates': [68], 'a': [69, 80], 'small': [70], 'number': [71], 'high-quality': [73], 'manner': [82], 'via': [83], 'segmenting': [84], 'scene': [91], 'into': [92], 'foreground': [93], 'points': [94, 103], 'background.': [96], 'transforms': [100], 'pooled': [102], 'each': [105, 124], 'learn': [111], 'better': [112], 'local': [113], 'spatial': [114], 'features,': [115], 'which': [116], 'combined': [118], 'with': [119, 154], 'global': [120], 'semantic': [121], 'features': [122], 'learned': [126], 'accurate': [130], 'box': [131], 'refinement': [132], 'confidence': [134], 'prediction.': [135], 'Extensive': [136], 'experiments': [137], 'on': [138], 'benchmark': [142], 'KITTI': [144], 'dataset': [145], 'show': [146], 'that': [147], 'proposed': [149], 'architecture': [150], 'outperforms': [151], 'state-of-the-art': [152], 'remarkable': [155], 'margins': [156], 'by': [157], 'using': [158], 'only': [159], 'input.': [163], 'code': [165], 'available': [167], 'at': [168], 'https://github.com/sshaoshuai/PointRCNN.': [169]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2949708697', 'counts_by_year': [{'year': 2024, 'cited_by_count': 358}, {'year': 2023, 'cited_by_count': 561}, {'year': 2022, 'cited_by_count': 430}, {'year': 2021, 'cited_by_count': 456}, {'year': 2020, 'cited_by_count': 350}, {'year': 2019, 'cited_by_count': 92}], 'updated_date': '2024-12-24T06:04:10.303712', 'created_date': '2019-06-27'}