Abstract:We construct and study the moduli of hypersurfaces in toric orbifolds. Let $X$ be a projective toric orbifold and $\alpha \in Cl(X)$ an ample class. The moduli space is constructed as a quotient of th...We construct and study the moduli of hypersurfaces in toric orbifolds. Let $X$ be a projective toric orbifold and $\alpha \in Cl(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = Aut(X)$. Since the group $G$ is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the $A$-discriminant we prove semistability for certain toric orbifolds. Further, we show that quasismooth hypersurfaces in a weighted projective space are stable when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.Read More
Publication Year: 2020
Publication Date: 2020-01-01
Language: en
Type: preprint
Access and Citation
Cited By Count: 1
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot