Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2943422424', 'doi': 'https://doi.org/10.1016/s2589-7500(19)30011-1', 'title': 'Is the future of medical diagnosis in computer algorithms?', 'display_name': 'Is the future of medical diagnosis in computer algorithms?', 'publication_year': 2019, 'publication_date': '2019-05-01', 'ids': {'openalex': 'https://openalex.org/W2943422424', 'doi': 'https://doi.org/10.1016/s2589-7500(19)30011-1', 'mag': '2943422424'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/s2589-7500(19)30011-1', 'pdf_url': 'http://www.thelancet.com/article/S2589750019300111/pdf', 'source': {'id': 'https://openalex.org/S4210237014', 'display_name': 'The Lancet Digital Health', 'issn_l': '2589-7500', 'issn': ['2589-7500'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'gold', 'oa_url': 'http://www.thelancet.com/article/S2589750019300111/pdf', 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5027940353', 'display_name': 'Karl Gruber', 'orcid': 'https://orcid.org/0000-0002-3485-9740'}, 'institutions': [], 'countries': [], 'is_corresponding': True, 'raw_author_name': 'Karl Gruber', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': ['https://openalex.org/A5027940353'], 'corresponding_institution_ids': [], 'apc_list': {'value': 5000, 'currency': 'USD', 'value_usd': 5000, 'provenance': 'doaj'}, 'apc_paid': {'value': 5000, 'currency': 'USD', 'value_usd': 5000, 'provenance': 'doaj'}, 'fwci': 3.72, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 17, 'citation_normalized_percentile': {'value': 0.93232, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 90, 'max': 91}, 'biblio': {'volume': '1', 'issue': '1', 'first_page': 'e15', 'last_page': 'e16'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11396', 'display_name': 'Artificial Intelligence in Healthcare', 'score': 0.9118, 'subfield': {'id': 'https://openalex.org/subfields/3605', 'display_name': 'Health Information Management'}, 'field': {'id': 'https://openalex.org/fields/36', 'display_name': 'Health Professions'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11396', 'display_name': 'Artificial Intelligence in Healthcare', 'score': 0.9118, 'subfield': {'id': 'https://openalex.org/subfields/3605', 'display_name': 'Health Information Management'}, 'field': {'id': 'https://openalex.org/fields/36', 'display_name': 'Health Professions'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.55854803}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.43054995}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.3210013}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/s2589-7500(19)30011-1', 'pdf_url': 'http://www.thelancet.com/article/S2589750019300111/pdf', 'source': {'id': 'https://openalex.org/S4210237014', 'display_name': 'The Lancet Digital Health', 'issn_l': '2589-7500', 'issn': ['2589-7500'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/s2589-7500(19)30011-1', 'pdf_url': 'http://www.thelancet.com/article/S2589750019300111/pdf', 'source': {'id': 'https://openalex.org/S4210237014', 'display_name': 'The Lancet Digital Health', 'issn_l': '2589-7500', 'issn': ['2589-7500'], 'is_oa': True, 'is_in_doaj': True, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 0, 'referenced_works': [], 'related_works': ['https://openalex.org/W2899084033', 'https://openalex.org/W2748952813', 'https://openalex.org/W2390279801', 'https://openalex.org/W2382290278', 'https://openalex.org/W2376932109', 'https://openalex.org/W2358668433', 'https://openalex.org/W2350741829', 'https://openalex.org/W2317200988', 'https://openalex.org/W2073681303', 'https://openalex.org/W2051487156'], 'abstract_inverted_index': {'In': [0, 747], 'a': [1, 49, 62, 90, 169, 211, 292, 405, 413, 441, 445, 461, 520, 547, 575, 624, 676, 748, 783, 924, 935, 1052, 1064, 1074, 1118], 'recent': [2], 'study,': [3, 480, 751, 853], 'Chinese': [4, 399], 'and': [5, 55, 134, 148, 181, 240, 245, 257, 262, 334, 355, 369, 380, 383, 400, 444, 466, 527, 550, 589, 600, 611, 621, 640, 672, 729, 735, 872, 912, 958, 1079, 1110, 1127, 1145], 'American': [6, 401], 'researchers': [7, 753], 'developed': [8], 'an': [9, 33, 38, 391, 1091, 1143], 'artificial': [10], 'intelligence': [11], '(AI)': [12], 'system': [13, 24, 393, 497, 659, 668, 732, 763, 775, 806, 925], 'using': [14], '1·3': [15], 'million': [16, 298, 422], 'electronic': [17, 115, 534], 'health': [18, 116, 1140], 'records': [19, 117], 'from': [20, 83, 89, 109, 118, 532, 726], 'across': [21], 'China.': [22], 'Their': [23], 'was': [25, 37, 426, 498, 596, 619, 864], 'capable': [26], 'of': [27, 52, 93, 114, 127, 184, 268, 303, 447, 464, 478, 484, 514, 561, 572, 578, 602, 627, 678, 757, 793, 839, 883, 899, 938, 954, 1125, 1137], 'diagnosing': [28], 'diseases': [29, 636, 1081], 'as': [30, 32, 77, 80, 335, 361, 546, 584, 704, 1073, 1090, 1117], 'accurately': [31], 'experienced': [34, 69], 'paediatrician.': [35], 'This': [36, 86, 415, 495], 'amazing': [39], 'feat,': [40], 'considering': [41], 'the': [42, 67, 120, 132, 135, 163, 174, 199, 254, 265, 285, 288, 306, 398, 431, 479, 482, 512, 598, 603, 608, 613, 646, 652, 655, 657, 666, 727, 755, 773, 777, 860, 881, 897, 1058, 1135], 'challenges': [43], 'involved.': [44], 'The': [45, 191, 491, 567, 591, 731, 787, 903, 1014], 'human': [46, 448, 758, 779, 1053, 1104], 'body': [47], 'is': [48, 61, 160, 321, 456, 716, 744, 896, 990, 1019, 1031], 'complex': [50], 'piece': [51], 'biological': [53], 'machinery': [54], 'trying': [56], 'to': [57, 162, 221, 252, 296, 314, 345, 373, 394, 412, 429, 451, 470, 501, 509, 519, 593, 606, 770, 814, 879, 905, 969, 987, 995, 1010, 1062, 1077, 1121, 1160], 'diagnose': [58, 395, 1078], 'our': [59], 'ailments': [60, 582], 'monumental': [63], 'task,': [64], 'even': [65, 108, 1097], 'for': [66, 125, 580, 650, 714, 738, 846, 894, 1088], 'most': [68, 1036], 'doctors.': [70], 'To': [71, 389, 522], 'improve': [72, 317], 'their': [73, 84, 318, 524, 594, 771, 884, 964, 997], 'diagnoses,': [74], 'doctors': [75, 1021, 1105], 'gather': [76], 'much': [78], 'information': [79, 87, 124, 219, 260], 'they': [81], 'can': [82, 204, 349, 435, 459, 632, 660, 817, 978, 1070, 1156], 'patients.': [85, 128, 690], 'comes': [88], 'wide': [91, 936], 'range': [92, 937], 'sources,': [94], 'including': [95], 'genome-wide': [96], 'studies,': [97], 'demographics,': [98], "doctor's": [99, 289], 'notes,': [100], 'clinical': [101, 153, 837, 901, 939, 956], 'images,': [102, 378], 'laboratory': [103], 'results,': [104, 772], 'genetic': [105], 'tests,': [106, 227], 'or': [107, 217, 226, 707, 1047, 1060, 1084], 'wearable': [110], 'sensors.': [111], 'Today,': [112], 'databases': [113], 'around': [119], 'world': [121], 'hold': [122], 'such': [123, 360, 423, 583, 703], 'billions': [126], 'But,': [129, 691, 741], 'despite': [130], 'all': [131, 909], 'data': [133, 259, 326, 385, 531, 545, 604, 648, 857, 918], 'best': [136], 'intentions,': [137], 'misdiagnoses': [138], 'happen': [139], 'more': [140, 327, 338, 356, 419, 647, 653, 809, 1161], 'often': [141], 'than': [142, 420], 'you': [143, 263], 'might': [144], 'think.': [145], '“Clinicians': [146], 'think': [147, 350], 'act': [149], 'in': [150, 186, 198, 281, 284, 332, 376, 386, 540, 597, 612, 616, 686, 782, 786, 820, 981, 1016, 1044, 1048, 1082, 1139, 1149, 1151, 1163], 'chaotic,': [151], 'time-pressured,': [152], 'environments': [154], 'while': [155], 'dealing': [156], 'with': [157, 291, 407, 511, 574, 635, 688, 701, 760, 851, 891, 930, 934, 993], 'uncertainty,': [158], 'which': [159, 294, 417, 863, 1152], 'integral': [161], 'diagnostic': [164, 207, 319, 576], 'process”,': [165], 'Dr': [166], 'Hardeep': [167], 'Singh,': [168], 'patient': [170, 222, 831, 835, 917], 'safety': [171], 'researcher': [172], 'at': [173, 278, 343, 481, 764, 796, 889, 948, 1033], 'Michael': [175], 'E': [176], 'DeBakey': [177], 'VA': [178], 'Medical': [179, 794], 'Center': [180], 'Baylor': [182], 'College': [183], 'Medicine,': [185], 'Houston,': [187], 'TX,': [188], 'USA,': [189, 489, 801], 'tells': [190, 490], 'Lancet': [192, 492], 'Digital': [193, 493], 'Health.': [194, 494], 'All': [195], 'this': [196, 253, 330, 438, 628, 745, 952, 1030], 'pressure': [197], 'fast-paced': [200], 'primary': [201, 1075], 'care': [202, 1141], 'environment': [203], 'translate': [205], 'into': [206, 214, 859], 'errors,': [208], 'especially': [209], 'when': [210, 237, 557, 1051], 'doctor': [212, 1054], 'runs': [213], 'problems': [215], 'gathering': [216], 'interpreting': [218], 'related': [220], 'history,': [223], 'physical': [224], 'examinations,': [225], 'Singh': [228, 275], 'explains.': [229, 566, 663], 'He': [230, 1000], 'adds,': [231], '“Things': [232], 'are': [233, 243, 309, 341, 693, 698, 843, 962, 967], 'not': [234, 684, 828, 868, 914, 1056, 1130], 'always': [235], 'black-and-white': [236], "patients'": [238, 543], 'symptoms': [239, 411, 510], 'disease': [241], 'conditions': [242], 'unfolding': [244], 'dynamically': [246], 'evolving': [247], 'over': [248, 721], 'time.': [249, 388], 'Now': [250], 'add': [251], 'currently': [255, 717, 991], 'immature': [256], 'disconnected': [258], 'systems': [261, 347, 696, 1039], 'get': [264], 'perfect': [266], 'storm': [267], 'risk”.': [269], 'A': [270, 680], '2014': [271], 'study': [272, 826], 'led': [273], 'by': [274, 322, 670, 720, 866, 1025], 'found': [276], 'that': [277, 348, 437, 506, 517, 697, 803, 842, 873, 960, 977, 1029, 1103, 1111], 'least': [279, 1034], 'one': [280], '20': [282], 'adults': [283], 'USA': [286], 'left': [287], 'office': [290], 'misdiagnosis,': [293], 'equates': [295], '12': [297], 'people': [299, 1162], 'per': [300], 'year.': [301], 'Half': [302], 'these': [304, 1099], 'misdiagnoses,': [305], 'authors': [307], 'estimated,': [308], 'potentially': [310], 'harmful.': [311], 'One': [312], 'way': [313], 'help': [315], 'physicians': [316, 759, 1126], 'accuracy': [320, 560, 577], 'helping': [323], 'them': [324], 'analyse': [325, 502], 'efficiently.': [328, 357], 'With': [329], 'goal': [331, 513], 'mind,': [333], 'computers': [336], 'become': [337], 'powerful,': [339], 'scientists': [340], 'looking': [342], 'AI': [344, 358, 392, 432, 496, 562, 609, 629, 658, 667, 695, 709, 712, 762, 774, 805, 861, 976, 998, 1038, 1069, 1138], 'design': [346], 'like': [351, 926], 'humans,': [352], 'only': [353, 633], 'faster': [354], 'approaches,': [359], 'machine': [362], 'learning,': [363, 368, 371], 'natural': [364], 'language': [365, 504], 'processing,': [366], 'representation': [367], 'deep': [370], 'aim': [372], 'identify': [374], 'patterns': [375, 516], 'words,': [377], 'voice': [379], 'video': [381], 'recordings,': [382], 'other': [384, 694], 'record': [387], 'develop': [390], 'paediatric': [396], 'diseases,': [397], 'team': [402, 529], 'first': [403], 'created': [404], 'dictionary': [406], 'key': [408, 424, 592], 'words': [409], 'linking': [410], 'disease.': [414, 521], 'dictionary,': [416], 'holds': [418], '1': [421], 'terms,': [425], 'then': [427, 499], 'used': [428, 500, 530, 719, 845, 915, 1072, 1115], 'train': [430, 607], 'system.': [433, 630], '“You': [434], 'imagine': [436], 'requires': [439], 'both': [440], 'huge': [442, 462], 'dataset': [443], 'lot': [446], 'physician': [449, 1119], 'manpower': [450], 'curate': [452], 'data—but': [453], 'once': [454], 'it': [455, 458, 618, 637, 816, 1128], 'made,': [457], 'save': [460], 'amount': [463, 599], 'work': [465, 634], 'has': [467, 638], 'enormous': [468], 'impact': [469], 'health-care': [471], 'delivery”,': [472], 'Prof': [473], 'Kang': [474], 'Zhang,': [475], 'lead': [476], 'author': [477], 'University': [483], 'California,': [485], 'San': [486], 'Diego,': [487], 'CA,': [488], 'plain': [503], 'inputs': [505], 'would': [507, 1067], 'refer': [508], 'finding': [515], 'linked': [518], 'test': [523], 'system,': [525, 713, 862], 'Zhang': [526, 565, 643, 662, 671, 1094, 1101], 'his': [528, 673], 'retrospective': [533], 'medical': [535, 767, 1154], 'records.': [536], '“We': [537, 966], 'tested': [538, 556], 'diagnoses': [539], '50': [541], '000': [542, 553, 723, 724], 'EMR': [544], 'validated': [548], 'cohort': [549], 'additional': [551], '10': [552], 'patients': [554, 869, 895, 932], 'were': [555, 569, 877], 'we': [558, 920], 'compared': [559, 754], 'vs': [563], 'physicians”': [564], 'results': [568], 'nothing': [570], 'short': [571], 'amazing,': [573], '95%': [579], 'common': [581, 739], 'acute': [585], 'upper': [586], 'respiratory': [587], 'infection': [588], 'sinusitis.': [590], 'success': [595], 'quality': [601, 1008], 'available': [605, 649, 1159], 'algorithm': [610], 'target': [614], 'population': [615], 'whom': [617], 'tested;': [620], 'here': [622], 'lays': [623], 'potential': [625], 'limitation': [626], '“AI': [631, 1112], 'seen': [639], 'trained': [641], 'before”': [642], 'says.': [644, 942, 985, 1095], 'So,': [645], 'training,': [651], 'accurate': [654, 743], 'prediction': [656], 'make,': [661], 'So': [664], 'far,': [665], 'designed': [669], 'teams': [674], 'remains': [675], 'proof': [677], 'concept.': [679], 'promising': [681, 1146], 'research': [682], 'experiment,': [683], 'yet': [685], 'use': [687, 829, 1136], 'actual': [689], 'there': [692], 'already': [699], 'interacting': [700], 'patients,': [702], "IBM's": [705], 'Watson': [706], "Babylon's": [708, 711, 761, 804, 825, 852, 975], 'chatbot.': [710], 'example,': [715, 1089], 'being': [718, 812], '3': [722], 'users': [725], 'UK': [728], 'Rwanda.': [730], 'provides': [733], 'quick': [734], 'easy-to-access': [736], 'advice': [737], 'ailments.': [740], 'how': [742], 'advice?': [746], 'non-peer-reviewed': [749], '2018': [750, 784], 'Babylon': [752, 927, 989], 'performance': [756], 'evaluating': [765], 'identical': [766], 'cases.': [768], 'According': [769, 986], 'outperformed': [776], 'average': [778], 'doctor.': [780], 'However,': [781], 'correspondence': [785], 'Lancet,': [788], 'Hamish': [789], 'Fraser,': [790], 'Associate': [791], 'Professor': [792], 'Science': [795], 'Brown': [797], 'University,': [798], 'Providence,': [799], 'RI,': [800], 'argued': [802], 'still': [807, 1107], 'needed': [808], 'testing': [810], 'before': [811], 'able': [813], 'prove': [815], 'perform': [818], 'well': [819, 929], 'real-world': [821, 972], 'settings.': [822], 'For': [823], 'instance,': [824], 'did': [827], 'real': [830, 916], 'data,': [832], 'but': [833], 'so-called': [834], 'vignettes,': [836], 'examples': [838], 'patient-related': [840], 'cases': [841], 'normally': [844], 'educational': [847], 'purposes.': [848], 'Other': [849], 'issues': [850], 'Fraser': [854, 941], 'says,': [855], 'involves': [856], 'input': [858], 'done': [865, 878], 'doctors,': [867], '(lay': [870], 'users),': [871], 'few': [874], 'statistical': [875], 'tests': [876], 'assess': [880], 'significance': [882], 'findings.': [885], '“The': [886], 'biggest': [887], 'problem': [888], 'present': [890], 'diagnosis': [892], 'programs': [893], 'lack': [898, 953], 'rigorous,': [900], 'evaluation.': [902], 'studies': [904, 961, 973], 'date': [906], 'have': [907, 913, 1057], 'almost': [908], 'been': [910], 'small': [911], 'so': [919], "don't": [921], 'know': [922, 1003], 'if': [923], 'performs': [928], 'typical': [931], 'presenting': [933], 'problems”,': [940], 'Saurabh': [943], 'Johri,': [944, 988], 'Chief': [945], 'Scientific': [946], 'Officer': [947], 'Babylon,': [949], 'commented': [950], 'on': [951, 963, 974], 'rigorous': [955], 'evaluations': [957], 'says': [959], 'way.': [965], 'keen': [968], 'run': [970], 'robust,': [971], 'be': [979, 1023, 1041, 1071, 1108, 1114, 1157], 'published': [980], 'peer-reviewed': [982], 'journals”,': [983], 'he': [984], 'working': [992], 'academics': [994], 'validate': [996], 'technology.': [999], 'added,': [1001], '“…we': [1002], 'new': [1004, 1147], 'technology': [1005], 'needs': [1006], 'high': [1007], 'evidence': [1009], 'earn': [1011], "people's": [1012, 1017], 'trust”.': [1013], 'question': [1015], 'mind': [1018], 'will': [1020], 'ever': [1022], 'replaced': [1024], 'computers?': [1026], 'Experts': [1027], 'agree': [1028], 'unlikely,': [1032], 'under': [1035, 1098], 'circumstances.': [1037], 'could': [1040], 'particularly': [1042], 'useful': [1043], 'resource-limited': [1045], 'areas': [1046], 'emergency': [1049], 'situations': [1050], 'does': [1055], 'time': [1059], 'resources': [1061], 'reach': [1063], 'diagnosis.': [1065], '“I': [1066], 'envision': [1068], 'deployment': [1076], 'triage': [1080], 'rural': [1083], 'resource': [1085], 'poor': [1086], 'areas,': [1087], 'online': [1092], 'system”,': [1093], 'But': [1096], 'circumstances,': [1100], 'argues': [1102], 'should': [1106, 1113, 1129], 'involved': [1109], 'primarily': [1116], 'assistant': [1120], 'reduce': [1122], 'overall': [1123], 'burdens': [1124], 'replace': [1131], 'physicians”.': [1132], 'Taken': [1133], 'together,': [1134], 'heralds': [1142], 'exciting': [1144], 'era': [1148], 'diagnosis,': [1150], 'meaningful': [1153], 'guidance': [1155], 'made': [1158], 'need.': [1164]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2943422424', 'counts_by_year': [{'year': 2023, 'cited_by_count': 5}, {'year': 2022, 'cited_by_count': 2}, {'year': 2021, 'cited_by_count': 4}, {'year': 2020, 'cited_by_count': 5}, {'year': 2019, 'cited_by_count': 1}], 'updated_date': '2025-01-10T07:14:39.365963', 'created_date': '2019-05-09'}