Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2939570633', 'doi': 'https://doi.org/10.1109/tgrs.2019.2907310', 'title': '<i>StfNet</i>: A Two-Stream Convolutional Neural Network for Spatiotemporal Image Fusion', 'display_name': '<i>StfNet</i>: A Two-Stream Convolutional Neural Network for Spatiotemporal Image Fusion', 'publication_year': 2019, 'publication_date': '2019-04-17', 'ids': {'openalex': 'https://openalex.org/W2939570633', 'doi': 'https://doi.org/10.1109/tgrs.2019.2907310', 'mag': '2939570633'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tgrs.2019.2907310', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S111326731', 'display_name': 'IEEE Transactions on Geoscience and Remote Sensing', 'issn_l': '0196-2892', 'issn': ['0196-2892', '1558-0644'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': True, 'oa_status': 'green', 'oa_url': 'https://elib.dlr.de/128212/1/08693668.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5039339597', 'display_name': 'Xun Liu', 'orcid': 'https://orcid.org/0000-0002-4805-3262'}, 'institutions': [{'id': 'https://openalex.org/I125839683', 'display_name': 'Beijing Institute of Technology', 'ror': 'https://ror.org/01skt4w74', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I125839683', 'https://openalex.org/I890469752']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Xun Liu', 'raw_affiliation_strings': ['BIT - Beijing Institute of Technology (5 South Zhongguancun Street, Haidian District, Beijing Postcode: 100081 - China)'], 'affiliations': [{'raw_affiliation_string': 'BIT - Beijing Institute of Technology (5 South Zhongguancun Street, Haidian District, Beijing Postcode: 100081 - China)', 'institution_ids': ['https://openalex.org/I125839683']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5079668307', 'display_name': 'Chenwei Deng', 'orcid': 'https://orcid.org/0000-0002-3747-5128'}, 'institutions': [{'id': 'https://openalex.org/I125839683', 'display_name': 'Beijing Institute of Technology', 'ror': 'https://ror.org/01skt4w74', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I125839683', 'https://openalex.org/I890469752']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Chenwei Deng', 'raw_affiliation_strings': ['BIT - Beijing Institute of Technology (5 South Zhongguancun Street, Haidian District, Beijing Postcode: 100081 - China)'], 'affiliations': [{'raw_affiliation_string': 'BIT - Beijing Institute of Technology (5 South Zhongguancun Street, Haidian District, Beijing Postcode: 100081 - China)', 'institution_ids': ['https://openalex.org/I125839683']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5106124934', 'display_name': 'Jocelyn Chanussot', 'orcid': 'https://orcid.org/0000-0003-4817-2875'}, 'institutions': [{'id': 'https://openalex.org/I4210124956', 'display_name': 'Grenoble Images Parole Signal Automatique', 'ror': 'https://ror.org/02wrme198', 'country_code': 'FR', 'type': 'facility', 'lineage': ['https://openalex.org/I106785703', 'https://openalex.org/I1294671590', 'https://openalex.org/I4210124956', 'https://openalex.org/I899635006']}], 'countries': ['FR'], 'is_corresponding': False, 'raw_author_name': 'Jocelyn Chanussot', 'raw_affiliation_strings': ["GIPSA-SIGMAPHY - GIPSA - Signal Images Physique (GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - France)"], 'affiliations': [{'raw_affiliation_string': "GIPSA-SIGMAPHY - GIPSA - Signal Images Physique (GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - France)", 'institution_ids': ['https://openalex.org/I4210124956']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5075013625', 'display_name': 'Danfeng Hong', 'orcid': 'https://orcid.org/0000-0002-3212-9584'}, 'institutions': [], 'countries': ['DE'], 'is_corresponding': False, 'raw_author_name': 'Danfeng Hong', 'raw_affiliation_strings': ['IMF - DLR Institut für Methodik der Fernerkundung / DLR Remote Sensing Technology Institute (Oberpfaffenhofen, 82234 Weßling - Germany)'], 'affiliations': [{'raw_affiliation_string': 'IMF - DLR Institut für Methodik der Fernerkundung / DLR Remote Sensing Technology Institute (Oberpfaffenhofen, 82234 Weßling - Germany)', 'institution_ids': []}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5100985496', 'display_name': 'Baojun Zhao', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I125839683', 'display_name': 'Beijing Institute of Technology', 'ror': 'https://ror.org/01skt4w74', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I125839683', 'https://openalex.org/I890469752']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Baojun Zhao', 'raw_affiliation_strings': ['BIT - Beijing Institute of Technology (5 South Zhongguancun Street, Haidian District, Beijing Postcode: 100081 - China)'], 'affiliations': [{'raw_affiliation_string': 'BIT - Beijing Institute of Technology (5 South Zhongguancun Street, Haidian District, Beijing Postcode: 100081 - China)', 'institution_ids': ['https://openalex.org/I125839683']}]}], 'institution_assertions': [], 'countries_distinct_count': 3, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 16.857, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 156, 'citation_normalized_percentile': {'value': 0.999846, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '57', 'issue': '9', 'first_page': '6552', 'last_page': '6564'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11659', 'display_name': 'Advanced Image Fusion Techniques', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2214', 'display_name': 'Media Technology'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11659', 'display_name': 'Advanced Image Fusion Techniques', 'score': 1.0, 'subfield': {'id': 'https://openalex.org/subfields/2214', 'display_name': 'Media Technology'}, 'field': {'id': 'https://openalex.org/fields/22', 'display_name': 'Engineering'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11105', 'display_name': 'Advanced Image Processing Techniques', 'score': 0.9989, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10688', 'display_name': 'Image and Signal Denoising Methods', 'score': 0.9969, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.72776806}, {'id': 'https://openalex.org/C81363708', 'wikidata': 'https://www.wikidata.org/wiki/Q17084460', 'display_name': 'Convolutional neural network', 'level': 2, 'score': 0.6133695}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.6039692}, {'id': 'https://openalex.org/C205372480', 'wikidata': 'https://www.wikidata.org/wiki/Q210521', 'display_name': 'Image resolution', 'level': 2, 'score': 0.5701322}, {'id': 'https://openalex.org/C69744172', 'wikidata': 'https://www.wikidata.org/wiki/Q860822', 'display_name': 'Image fusion', 'level': 3, 'score': 0.5376028}, {'id': 'https://openalex.org/C115961682', 'wikidata': 'https://www.wikidata.org/wiki/Q860623', 'display_name': 'Image (mathematics)', 'level': 2, 'score': 0.530298}, {'id': 'https://openalex.org/C2776036281', 'wikidata': 'https://www.wikidata.org/wiki/Q48769818', 'display_name': 'Constraint (computer-aided design)', 'level': 2, 'score': 0.5116189}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.505071}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.33143878}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.1582362}, {'id': 'https://openalex.org/C2524010', 'wikidata': 'https://www.wikidata.org/wiki/Q8087', 'display_name': 'Geometry', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 4, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tgrs.2019.2907310', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S111326731', 'display_name': 'IEEE Transactions on Geoscience and Remote Sensing', 'issn_l': '0196-2892', 'issn': ['0196-2892', '1558-0644'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310319808', 'host_organization_name': 'Institute of Electrical and Electronics Engineers', 'host_organization_lineage': ['https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://hal.archives-ouvertes.fr/hal-02307398', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306402512', 'display_name': 'HAL (Le Centre pour la Communication Scientifique Directe)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1294671590', 'host_organization_name': 'Centre National de la Recherche Scientifique', 'host_organization_lineage': ['https://openalex.org/I1294671590'], 'host_organization_lineage_names': ['Centre National de la Recherche Scientifique'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://hal.science/hal-02307398', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306402512', 'display_name': 'HAL (Le Centre pour la Communication Scientifique Directe)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1294671590', 'host_organization_name': 'Centre National de la Recherche Scientifique', 'host_organization_lineage': ['https://openalex.org/I1294671590'], 'host_organization_lineage_names': ['Centre National de la Recherche Scientifique'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'https://elib.dlr.de/128212/1/08693668.pdf', 'pdf_url': 'https://elib.dlr.de/128212/1/08693668.pdf', 'source': {'id': 'https://openalex.org/S4377196266', 'display_name': 'elib (German Aerospace Center)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I2898391981', 'host_organization_name': 'Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)', 'host_organization_lineage': ['https://openalex.org/I2898391981'], 'host_organization_lineage_names': ['Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'acceptedVersion', 'is_accepted': True, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://elib.dlr.de/128212/1/08693668.pdf', 'pdf_url': 'https://elib.dlr.de/128212/1/08693668.pdf', 'source': {'id': 'https://openalex.org/S4377196266', 'display_name': 'elib (German Aerospace Center)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I2898391981', 'host_organization_name': 'Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)', 'host_organization_lineage': ['https://openalex.org/I2898391981'], 'host_organization_lineage_names': ['Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': 'acceptedVersion', 'is_accepted': True, 'is_published': False}, 'sustainable_development_goals': [], 'grants': [{'funder': 'https://openalex.org/F4320321001', 'funder_display_name': 'National Natural Science Foundation of China', 'award_id': '91438203'}], 'datasets': [], 'versions': [], 'referenced_works_count': 42, 'referenced_works': ['https://openalex.org/W1588434184', 'https://openalex.org/W1840202565', 'https://openalex.org/W1965825034', 'https://openalex.org/W1970515153', 'https://openalex.org/W1982956952', 'https://openalex.org/W1987337512', 'https://openalex.org/W2003224325', 'https://openalex.org/W2013140666', 'https://openalex.org/W2015345826', 'https://openalex.org/W2023015896', 'https://openalex.org/W2031596845', 'https://openalex.org/W2050225888', 'https://openalex.org/W2050565140', 'https://openalex.org/W2051372842', 'https://openalex.org/W2055007440', 'https://openalex.org/W2056811372', 'https://openalex.org/W2061929982', 'https://openalex.org/W2088254198', 'https://openalex.org/W2088603520', 'https://openalex.org/W2093033924', 'https://openalex.org/W2101051003', 'https://openalex.org/W2119513445', 'https://openalex.org/W2121058967', 'https://openalex.org/W2151456308', 'https://openalex.org/W2200350976', 'https://openalex.org/W2295859130', 'https://openalex.org/W2518815253', 'https://openalex.org/W2547535712', 'https://openalex.org/W2554764988', 'https://openalex.org/W2615981376', 'https://openalex.org/W2755992512', 'https://openalex.org/W2757399931', 'https://openalex.org/W2762381996', 'https://openalex.org/W2773771410', 'https://openalex.org/W2783165089', 'https://openalex.org/W2783231089', 'https://openalex.org/W2793445582', 'https://openalex.org/W2795018073', 'https://openalex.org/W2902746003', 'https://openalex.org/W2964140612', 'https://openalex.org/W3101012758', 'https://openalex.org/W54257720'], 'related_works': ['https://openalex.org/W4321487865', 'https://openalex.org/W4313906399', 'https://openalex.org/W4293226380', 'https://openalex.org/W2811106690', 'https://openalex.org/W2554736181', 'https://openalex.org/W2381578981', 'https://openalex.org/W2373946551', 'https://openalex.org/W2350275110', 'https://openalex.org/W2258043314', 'https://openalex.org/W2032636564'], 'abstract_inverted_index': {'Spatiotemporal': [0], 'image': [1, 39, 75, 104, 110, 120, 133, 144, 166], 'fusion': [2, 35, 81, 191], 'is': [3, 96], 'considered': [4], 'as': [5, 36], 'a': [6, 37, 84, 131, 178], 'promising': [7], 'way': [8], 'to': [9, 54, 116, 185, 203], 'provide': [10], 'Earth': [11], 'observations': [12], 'with': [13, 83], 'both': [14, 228], 'high': [15], 'spatial': [16, 47], 'resolution': [17], 'and': [18, 21, 77, 142, 176, 193, 200, 227, 230], 'frequent': [19], 'coverage,': [20], 'recently,': [22], 'learning-based': [23], 'solutions': [24], 'have': [25], 'been': [26], 'receiving': [27], 'broad': [28], 'attention.': [29], 'However,': [30], 'these': [31], 'algorithms': [32], 'treating': [33], 'spatiotemporal': [34, 80], 'single': [38], 'super-resolution': [40], 'problem,': [41], 'generally': [42], 'suffers': [43], 'from': [44, 136], 'the': [45, 55, 79, 100, 108, 113, 118, 122, 137, 154, 170, 187, 190, 210, 213], 'significant': [46], 'information': [48, 72, 152], 'loss': [49], 'in': [50, 59, 66, 73, 153, 198], 'coarse': [51, 119, 141], 'images,': [52], 'due': [53], 'large': [56], 'upscaling': [57], 'factors': [58], 'real': [60], 'applications.': [61], 'To': [62], 'address': [63], 'this': [64, 67, 94, 126], 'issue,': [65], 'paper,': [68], 'we': [69, 106, 168], 'exploit': [70], 'temporal': [71, 101, 171, 179, 182, 195], 'fine': [74, 109, 132, 143, 157, 165], 'sequences': [76], 'solve': [78], 'problem': [82], 'two-stream': [85], 'convolutional': [86], 'neural': [87], 'network': [88, 129], 'called': [89], 'StfNet.': [90], 'The': [91], 'novelty': [92], 'of': [93, 161, 189, 212, 220], 'paper': [95], 'twofold.': [97], 'First,': [98], 'considering': [99], 'dependence': [102], 'among': [103, 173], 'sequences,': [105], 'incorporate': [107], 'acquired': [111], 'at': [112, 121], 'neighboring': [114, 156], 'date': [115], 'super-resolve': [117], 'prediction': [123], 'date.': [124], 'In': [125], 'way,': [127], 'our': [128, 235], 'predicts': [130], 'not': [134], 'only': [135], 'structural': [138], 'similarity': [139], 'between': [140], 'pairs': [145], 'but': [146], 'also': [147], 'by': [148], 'exploiting': [149], 'abundant': [150], 'texture': [151], 'available': [155], 'images.': [158], 'Second,': [159], 'instead': [160], 'estimating': [162], 'each': [163], 'output': [164], 'independently,': [167], 'consider': [169], 'relations': [172], 'time-series': [174], 'images': [175], 'formulate': [177], 'constraint.': [180], 'This': [181], 'constraint': [183], 'aiming': [184], 'guarantee': [186], 'uniqueness': [188], 'result': [192], 'encourages': [194], 'consistent': [196], 'predictions': [197], 'learning': [199], 'thus': [201], 'leads': [202], 'more': [204], 'realistic': [205], 'final': [206], 'results.': [207], 'We': [208], 'evaluate': [209], 'performance': [211], 'StfNet': [214], 'using': [215], 'two': [216], 'actual': [217], 'data': [218], 'sets': [219], 'Landsat-Moderate': [221], 'Resolution': [222], 'Imaging': [223], 'Spectroradiometer': [224], '(MODIS)': [225], 'acquisitions,': [226], 'visual': [229], 'quantitative': [231], 'evaluations': [232], 'demonstrate': [233], 'that': [234], 'algorithm': [236], 'achieves': [237], 'state-of-the-art': [238], 'performance.': [239]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2939570633', 'counts_by_year': [{'year': 2024, 'cited_by_count': 22}, {'year': 2023, 'cited_by_count': 28}, {'year': 2022, 'cited_by_count': 40}, {'year': 2021, 'cited_by_count': 27}, {'year': 2020, 'cited_by_count': 25}, {'year': 2019, 'cited_by_count': 11}], 'updated_date': '2024-12-21T19:43:56.502492', 'created_date': '2019-04-25'}