Title: Crossed-beam chemical reaction dynamics probed with universal and state resolved ion imaging
Abstract:The main goal of chemical reaction dynamics is to unravel the intimate motions of individual atoms during a chemical transformation. This information must generally be inferred from indirect macroscop...The main goal of chemical reaction dynamics is to unravel the intimate motions of individual atoms during a chemical transformation. This information must generally be inferred from indirect macroscopic measurement. Very important information such as translational energy dependence of the reaction cross-section, vibrational mode-specific promotion of reactivity, product angular and velocity distributions are normally extracted. Understanding how these chemical reactions occur at the microscopic level gives us a better insight in understanding reactive intermediates and products of reaction. For a better understanding of the elementary chemical reactions, it is imperative that the studies are performed under well-defined laboratory conditions. Over the last few decades, the field has witnessed unprecedented advances in both experiment and theory. Advancements in generating reactants, state selection, improvement of crossed-molecular beam machines and products detection have gone a long way to improve our ability in studying chemical reactions in the gas phase. In 1986, Hershbach,[1] Lee[2] , and Polayni[3] together shared the Nobel Prize in Chemistry for their work on the dynamics of gas phase reactions.Read More