Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2895594311', 'doi': 'https://doi.org/10.1213/ane.0000000000003680', 'title': 'Identifying the Best Cut-Point for a Biomarker, or Not', 'display_name': 'Identifying the Best Cut-Point for a Biomarker, or Not', 'publication_year': 2018, 'publication_date': '2018-10-01', 'ids': {'openalex': 'https://openalex.org/W2895594311', 'doi': 'https://doi.org/10.1213/ane.0000000000003680', 'mag': '2895594311', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/30216286'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1213/ane.0000000000003680', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S104698359', 'display_name': 'Anesthesia & Analgesia', 'issn_l': '0003-2999', 'issn': ['0003-2999', '1526-7598'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315671', 'host_organization_name': 'Lippincott Williams & Wilkins', 'host_organization_lineage': ['https://openalex.org/P4310315671', 'https://openalex.org/P4310318547'], 'host_organization_lineage_names': ['Lippincott Williams & Wilkins', 'Wolters Kluwer'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'letter', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5070245346', 'display_name': 'Edward J. Mascha', 'orcid': 'https://orcid.org/0000-0002-0451-1196'}, 'institutions': [{'id': 'https://openalex.org/I4210117220', 'display_name': 'Barro Colorado Island', 'ror': 'https://ror.org/02f4ya153', 'country_code': 'PA', 'type': 'facility', 'lineage': ['https://openalex.org/I103187081', 'https://openalex.org/I128212801', 'https://openalex.org/I4210117220']}, {'id': 'https://openalex.org/I1316902750', 'display_name': 'Cleveland Clinic', 'ror': 'https://ror.org/03xjacd83', 'country_code': 'US', 'type': 'healthcare', 'lineage': ['https://openalex.org/I1316902750']}], 'countries': ['PA', 'US'], 'is_corresponding': True, 'raw_author_name': 'Edward J. Mascha', 'raw_affiliation_strings': ['From the Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio.', 'Funding: None.', 'The author declares no conflicts of interest.'], 'affiliations': [{'raw_affiliation_string': 'Funding: None.', 'institution_ids': ['https://openalex.org/I4210117220']}, {'raw_affiliation_string': 'From the Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio.', 'institution_ids': ['https://openalex.org/I1316902750']}, {'raw_affiliation_string': 'The author declares no conflicts of interest.', 'institution_ids': []}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': ['https://openalex.org/A5070245346'], 'corresponding_institution_ids': ['https://openalex.org/I4210117220', 'https://openalex.org/I1316902750'], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 18, 'citation_normalized_percentile': {'value': 0.999634, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 90, 'max': 91}, 'biblio': {'volume': '127', 'issue': '4', 'first_page': '820', 'last_page': '822'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T11700', 'display_name': 'Hemodynamic Monitoring and Therapy', 'score': 0.9488, 'subfield': {'id': 'https://openalex.org/subfields/2746', 'display_name': 'Surgery'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, 'topics': [{'id': 'https://openalex.org/T11700', 'display_name': 'Hemodynamic Monitoring and Therapy', 'score': 0.9488, 'subfield': {'id': 'https://openalex.org/subfields/2746', 'display_name': 'Surgery'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T11930', 'display_name': 'Cardiac, Anesthesia and Surgical Outcomes', 'score': 0.9154, 'subfield': {'id': 'https://openalex.org/subfields/2705', 'display_name': 'Cardiology and Cardiovascular Medicine'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}, {'id': 'https://openalex.org/T11116', 'display_name': 'Trauma, Hemostasis, Coagulopathy, Resuscitation', 'score': 0.9093, 'subfield': {'id': 'https://openalex.org/subfields/2706', 'display_name': 'Critical Care and Intensive Care Medicine'}, 'field': {'id': 'https://openalex.org/fields/27', 'display_name': 'Medicine'}, 'domain': {'id': 'https://openalex.org/domains/4', 'display_name': 'Health Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/cut-point', 'display_name': 'Cut-point', 'score': 0.71432126}, {'id': 'https://openalex.org/keywords/discriminative-model', 'display_name': 'Discriminative model', 'score': 0.6350452}, {'id': 'https://openalex.org/keywords/plot', 'display_name': 'Plot (graphics)', 'score': 0.5357681}, {'id': 'https://openalex.org/keywords/false-positive-rate', 'display_name': 'False positive rate', 'score': 0.41601795}], 'concepts': [{'id': 'https://openalex.org/C58471807', 'wikidata': 'https://www.wikidata.org/wiki/Q327120', 'display_name': 'Receiver operating characteristic', 'level': 2, 'score': 0.76757514}, {'id': 'https://openalex.org/C2781415353', 'wikidata': 'https://www.wikidata.org/wiki/Q5196602', 'display_name': 'Cut-point', 'level': 2, 'score': 0.71432126}, {'id': 'https://openalex.org/C71924100', 'wikidata': 'https://www.wikidata.org/wiki/Q11190', 'display_name': 'Medicine', 'level': 0, 'score': 0.6823956}, {'id': 'https://openalex.org/C97931131', 'wikidata': 'https://www.wikidata.org/wiki/Q5282087', 'display_name': 'Discriminative model', 'level': 2, 'score': 0.6350452}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.5447302}, {'id': 'https://openalex.org/C167651023', 'wikidata': 'https://www.wikidata.org/wiki/Q1474611', 'display_name': 'Plot (graphics)', 'level': 2, 'score': 0.5357681}, {'id': 'https://openalex.org/C182365436', 'wikidata': 'https://www.wikidata.org/wiki/Q50701', 'display_name': 'Variable (mathematics)', 'level': 2, 'score': 0.501328}, {'id': 'https://openalex.org/C148220186', 'wikidata': 'https://www.wikidata.org/wiki/Q7111912', 'display_name': 'Outcome (game theory)', 'level': 2, 'score': 0.48851097}, {'id': 'https://openalex.org/C21200559', 'wikidata': 'https://www.wikidata.org/wiki/Q7451068', 'display_name': 'Sensitivity (control systems)', 'level': 2, 'score': 0.4694991}, {'id': 'https://openalex.org/C2779662365', 'wikidata': 'https://www.wikidata.org/wiki/Q5416694', 'display_name': 'Event (particle physics)', 'level': 2, 'score': 0.4440776}, {'id': 'https://openalex.org/C95922358', 'wikidata': 'https://www.wikidata.org/wiki/Q5432725', 'display_name': 'False positive rate', 'level': 2, 'score': 0.41601795}, {'id': 'https://openalex.org/C2781197716', 'wikidata': 'https://www.wikidata.org/wiki/Q864574', 'display_name': 'Biomarker', 'level': 2, 'score': 0.41304404}, {'id': 'https://openalex.org/C149782125', 'wikidata': 'https://www.wikidata.org/wiki/Q160039', 'display_name': 'Econometrics', 'level': 1, 'score': 0.38047972}, {'id': 'https://openalex.org/C126322002', 'wikidata': 'https://www.wikidata.org/wiki/Q11180', 'display_name': 'Internal medicine', 'level': 1, 'score': 0.28000146}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.24816284}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.19237113}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.113999635}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C55493867', 'wikidata': 'https://www.wikidata.org/wiki/Q7094', 'display_name': 'Biochemistry', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C185592680', 'wikidata': 'https://www.wikidata.org/wiki/Q2329', 'display_name': 'Chemistry', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C144237770', 'wikidata': 'https://www.wikidata.org/wiki/Q747534', 'display_name': 'Mathematical economics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C24326235', 'wikidata': 'https://www.wikidata.org/wiki/Q126095', 'display_name': 'Electronic engineering', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C127413603', 'wikidata': 'https://www.wikidata.org/wiki/Q11023', 'display_name': 'Engineering', 'level': 0, 'score': 0.0}], 'mesh': [{'descriptor_ui': 'D005342', 'descriptor_name': 'Fibrinolysis', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D013916', 'descriptor_name': 'Thrombelastography', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D015415', 'descriptor_name': 'Biomarkers', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D015331', 'descriptor_name': 'Cohort Studies', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 2, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1213/ane.0000000000003680', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S104698359', 'display_name': 'Anesthesia & Analgesia', 'issn_l': '0003-2999', 'issn': ['0003-2999', '1526-7598'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310315671', 'host_organization_name': 'Lippincott Williams & Wilkins', 'host_organization_lineage': ['https://openalex.org/P4310315671', 'https://openalex.org/P4310318547'], 'host_organization_lineage_names': ['Lippincott Williams & Wilkins', 'Wolters Kluwer'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/30216286', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'display_name': 'Reduced inequalities', 'id': 'https://metadata.un.org/sdg/10', 'score': 0.68}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 3, 'referenced_works': ['https://openalex.org/W2152575748', 'https://openalex.org/W2529940321', 'https://openalex.org/W2800355849'], 'related_works': ['https://openalex.org/W2415514194', 'https://openalex.org/W2392162854', 'https://openalex.org/W2276605354', 'https://openalex.org/W2188404066', 'https://openalex.org/W2133539741', 'https://openalex.org/W2124537635', 'https://openalex.org/W2117352205', 'https://openalex.org/W2080561562', 'https://openalex.org/W2073887351', 'https://openalex.org/W1518873647'], 'abstract_inverted_index': {'When': [0, 1068], 'you': [1], 'come': [2], 'to': [3, 22, 33, 39, 200, 213, 219, 256, 278, 328, 342, 410, 451, 502, 511, 520, 604, 651, 679, 700, 732, 770, 773, 788, 849, 907, 953, 1040, 1103, 1148, 1202, 1266, 1292, 1493, 1536, 1580, 1587, 1613, 1622, 1631, 1654, 1671, 1731, 1758, 1764, 1842], 'a': [4, 17, 29, 43, 55, 113, 151, 162, 193, 207, 222, 242, 258, 272, 304, 387, 393, 421, 437, 456, 463, 473, 508, 513, 606, 676, 719, 858, 903, 943, 955, 958, 996, 1117, 1150, 1162, 1168, 1186, 1231, 1268, 1325, 1345, 1350, 1370, 1390, 1420, 1424, 1429, 1434, 1495, 1516, 1588, 1637, 1648, 1740, 1775, 1787, 1792, 1815, 1846], 'fork': [5, 1893], 'in': [6, 61, 203, 260, 335, 494, 517, 562, 583, 596, 629, 893, 901, 936, 941, 971, 984, 1005, 1007, 1076, 1090, 1191, 1230, 1395, 1540, 1573, 1691, 1707, 1845, 1875, 1894], 'the': [7, 14, 65, 70, 73, 80, 88, 96, 102, 105, 118, 126, 154, 171, 182, 196, 215, 237, 264, 289, 294, 299, 309, 322, 330, 365, 370, 373, 380, 413, 418, 429, 487, 539, 563, 612, 617, 626, 635, 638, 656, 684, 702, 706, 710, 715, 733, 747, 774, 782, 801, 809, 865, 869, 1027, 1047, 1055, 1059, 1064, 1077, 1105, 1121, 1132, 1154, 1226, 1243, 1257, 1260, 1273, 1285, 1289, 1304, 1310, 1340, 1440, 1450, 1453, 1461, 1488, 1543, 1598, 1602, 1605, 1615, 1634, 1645, 1655, 1662, 1708, 1720, 1723, 1807, 1821, 1825, 1828, 1836, 1858, 1884, 1895, 1911, 1915], 'road,': [8], 'take': [9], 'it.': [10], '—Yogi': [11], 'Berra': [12], 'Assessing': [13], 'ability': [15], 'of': [16, 46, 72, 79, 109, 115, 128, 141, 195, 247, 266, 306, 324, 364, 369, 390, 396, 420, 439, 465, 475, 565, 578, 714, 737, 749, 776, 1057, 1109, 1127, 1131, 1287, 1295, 1306, 1347, 1352, 1379, 1417, 1426, 1431, 1472, 1510, 1532, 1556, 1584, 1593, 1601, 1640, 1658, 1830, 1857, 1864], 'biomarker': [18, 1332, 1341, 1371, 1421, 1457, 1552, 1705, 1724], 'or': [19, 25, 32, 156, 210, 229, 648, 686, 728, 837, 847, 1011, 1016, 1183, 1212, 1219, 1237, 1591, 1604, 1627, 1695, 1716, 1761, 1824, 1861], 'predictor': [20, 81, 119, 172, 197, 295, 305, 371, 783, 859, 1603], 'variable': [21, 120], 'decide': [23], 'whether': [24, 150, 206, 221, 504, 522, 1217], 'not': [26, 313, 538, 554, 559, 690, 800, 861, 908, 1026, 1033, 1247, 1499, 1596, 1701, 1712, 1728], 'patients': [27, 262, 338, 425, 1754], 'have': [28, 125, 542, 885, 991], 'certain': [30, 1095, 1589], 'condition,': [31, 957], 'predict': [34, 954, 1843], 'those': [35, 123, 131, 1831], 'who': [36, 124, 132], 'are': [37, 524, 534, 547, 553, 570, 646, 669, 1019, 1222, 1240, 1281, 1313, 1400], 'likely': [38, 212, 277], 'contract': [40, 214], 'it,': [41], 'is': [42, 85, 93, 176, 185, 211, 312, 350, 377, 407, 507, 576, 616, 634, 675, 683, 689, 693, 784, 792, 845, 854, 860, 871, 916, 948, 961, 969, 1013, 1025, 1038, 1129, 1337, 1367, 1437, 1459, 1498, 1620, 1665, 1669, 1727, 1750, 1772, 1881], 'vital': [44], 'component': [45], 'perioperative': [47], 'research.': [48], 'In': [49, 135, 244, 1309, 1575, 1642, 1683, 1834], 'such': [50, 136, 180, 241, 867, 891, 902, 938, 1111, 1643, 1684], 'studies,': [51], 'researchers': [52, 1073], 'commonly': [53], 'conduct': [54], 'receiver': [56, 1504], 'operating': [57, 1505], 'characteristic': [58], '(ROC)': [59], 'analysis': [60], 'which': [62, 271, 320, 337, 642, 692, 745, 942, 1008, 1474, 1692, 1803], 'they': [63, 461, 552, 1018, 1610, 1628], 'plot': [64, 111], 'sensitivity': [66, 84, 325, 355, 411, 464, 491, 531, 543, 622, 643, 661, 666, 739, 750, 778, 811, 836, 888, 925, 966, 1001, 1010, 1158, 1174, 1200, 1253, 1278, 1346, 1376, 1401, 1425, 1444, 1465, 1511, 1533, 1548, 1635, 1677, 1694, 1747], 'versus': [67, 427], '1': [68, 86, 94, 359, 1361], 'minus': [69, 87, 95, 412], 'specificity': [71, 92, 357, 474, 493, 533, 545, 624, 645, 663, 668, 780, 960, 1012, 1160, 1208, 1280, 1351, 1378, 1414, 1430, 1446, 1467, 1535, 1550, 1619, 1679, 1696, 1749], 'outcome': [74, 155, 290, 1726, 1844], 'for': [75, 192, 240, 263, 301, 333, 360, 455, 480, 655, 1088, 1116, 1120, 1157, 1173, 1197, 1225, 1331, 1339, 1354, 1369, 1383, 1439, 1456, 1483, 1551, 1558, 1561, 1571, 1647, 1680, 1704, 1736, 1791, 1838, 1873, 1883], 'each': [76, 361, 1178, 1294, 1323, 1388, 1398, 1812], 'observed': [77, 310, 362, 462, 1490, 1832], 'value': [78, 265, 363, 368, 376, 389, 395, 438, 633, 723, 1108, 1342, 1372, 1422, 1441, 1590, 1639], 'variable,': [82, 296], 'where': [83], 'false-negative': [89, 1218, 1238, 1867], 'probability': [90], 'and': [91, 158, 167, 291, 297, 326, 392, 416, 445, 472, 492, 532, 544, 581, 623, 644, 662, 667, 672, 740, 751, 779, 814, 889, 926, 1030, 1086, 1138, 1159, 1175, 1207, 1254, 1279, 1300, 1321, 1349, 1377, 1386, 1402, 1428, 1433, 1445, 1466, 1512, 1534, 1549, 1595, 1625, 1667, 1678, 1725, 1748, 1811, 1866, 1909, 1913], 'false-positive': [97, 414, 973, 1220, 1236, 1865], 'probability.': [98], 'One': [99], 'then': [100, 190, 316, 1818], 'reports': [101], '"area': [103], 'under': [104], 'ROC': [106, 639, 716, 1261, 1290, 1316, 1381, 1502, 1606], 'curve"': [107], '(AUC)': [108], 'that': [110, 181, 436, 546, 558, 600, 619, 665, 682, 704, 736, 791, 797, 826, 868, 884, 935, 977, 985, 1051, 1080, 1124, 1152, 1199, 1250, 1330, 1343, 1373, 1442, 1463, 1525, 1719, 1891], 'as': [112, 288, 293, 303, 352, 379, 628, 649, 653, 756, 892, 939, 993, 1112, 1518, 1703, 1777], 'measure': [114], 'how': [116, 232, 586], 'well': [117], 'can': [121, 587, 601, 880, 1263, 1795], 'discriminate': [122], 'event': [127], 'interest': [129], 'from': [130, 709, 1715, 1774, 1827], 'do': [133, 233], 'not.': [134, 230], 'an': [137, 139, 566, 789, 815, 1070, 1125, 1529, 1769, 1839], 'analysis,': [138], 'AUC': [140, 184, 300, 311, 790, 870, 876, 1126, 1617, 1664], '0.50': [142, 1135], 'would': [143, 160, 274, 339, 537, 698, 767, 919, 1045, 1101, 1188, 1246, 1302, 1475, 1564, 1651], 'be': [144, 201, 227, 275, 340, 560, 602, 699, 729, 754, 771, 841, 850, 906, 921, 1034, 1046, 1084, 1102, 1146, 1189, 1203, 1248, 1264, 1477, 1524, 1537, 1565, 1652, 1689, 1698, 1784, 1796, 1851], 'attained': [145], 'by': [146, 169, 401, 757, 832, 1397, 1746, 1786], 'randomly': [147, 1805], 'guessing': [148], 'at': [149, 641, 873, 1180, 1204, 1209, 1419, 1447, 1468, 1636, 1755, 1762], 'patient': [152, 208, 273], 'had': [153], 'not,': [157, 831], '1.0': [159, 391, 1139], 'indicate': [161, 452], 'perfect': [163], 'discrimination': [164], 'between': [165, 490, 1134, 1623, 1722], 'events': [166], 'nonevents': [168], 'using': [170, 764, 1487, 1798], 'variable.': [173], 'If': [174], 'there': [175, 523, 571, 1312, 1686], 'good': [177, 509, 677], 'discriminative': [178], 'ability,': [179], 'estimated': [183, 298, 810, 1663, 1773, 1797], 'noticeably': [186], '>0.50,': [187], 'one': [188, 501, 618, 915, 922, 968, 1081, 1249], 'might': [189, 753, 840, 905, 1145, 1195, 1523, 1611, 1629], 'search': [191, 1646, 1837], 'cut-point': [194, 239, 259, 332, 541, 575, 615, 1062, 1119, 1151, 1187, 1245, 1455, 1497, 1527, 1650, 1674, 1735, 1771, 1794, 1841], 'either:': [198], '(1)': [199], 'used': [202, 283, 317, 582, 603], 'decision-making': [204, 946], 'on': [205, 637, 1216, 1507], 'has': [209, 386, 705, 1344, 1374, 1406, 1528], 'condition;': [216], 'and/or': [217], '(2)': [218], 'determine': [220, 605, 1494], 'more': [223, 548, 694, 851, 1014, 1223], 'invasive': [224], 'test': [225], 'should': [226, 499, 557, 1031, 1074, 1167, 1711, 1783, 1850, 1870], 'conducted': [228], 'So': [231], 'we': [234, 588], 'best': [235, 331, 381, 514, 607, 614, 874, 899, 911, 1028, 1048, 1060, 1118, 1496, 1649, 1793, 1816], 'identify': [236], 'optimal': [238, 540, 567, 1071, 1244, 1454, 1770, 1840], 'predictor?': [243], 'this': [245, 459, 518, 674, 722], 'issue': [246], 'Anesthesia': [248], '&': [249], 'Analgesia,': [250], 'Gomez': [251, 431, 495, 758, 804, 821, 928, 978], 'Builes': [252, 432, 496, 759, 805, 822, 929, 979], 'et': [253, 403, 433, 497, 760, 806, 823, 930, 980], 'al1': [254, 434, 498, 807, 824, 931, 981], 'sought': [255], 'find': [257, 1149], 'trauma': [261], 'maximum': [267, 388], 'lysis': [268], '(ML),': [269], 'below': [270], 'less': [276], 'survive': [279], '48': [280, 345, 484], 'hours.': [281, 346, 485], 'They': [282, 315], 'logistic': [284], 'regression,': [285], 'with': [286, 372, 426, 727, 803, 864, 923, 998, 1161, 1423, 1675, 1778, 1801], 'mortality': [287, 307, 482], 'ML': [292, 302, 334, 440, 449], '(although': [308], 'reported).': [314], "Youden's": [318, 347, 384, 405, 443, 505, 630, 743, 765, 828, 878, 988, 1023, 1043, 1307, 1334, 1365, 1409, 1435, 1491], 'index,': [319, 444, 744], 'maximizes': [321, 620, 746], 'sum': [323, 748], 'specificity,': [327, 752, 838, 890, 1176], 'choose': [329, 701, 909], 'discriminating': [336], 'expected': [341], 'die': [343], 'within': [344, 483], 'index': [348, 385, 406, 506, 766, 829, 879, 989, 1024, 1044, 1335, 1366, 1410, 1436, 1471, 1492], '(J)': [349, 1336], 'calculated': [351], 'J': [353, 375, 1355, 1411], '=': [354, 1356, 1362], '+': [356, 1358, 1413], '−': [358, 1360, 1415], 'predictor.': [366, 1122], 'The': [367, 898], 'largest': [374, 1489], 'chosen': [378, 613, 763, 1085], 'cut-point.2': [382], 'Thus,': [383], 'minimum': [394], '0.': [397], 'As': [398], 'pointed': [399], 'out': [400, 934], 'Zhou': [402], 'al,3': [404], 'also': [408, 768], 'equal': [409, 652, 1375], 'rate,': [415], 'reflects': [417], 'likelihood': [419], 'positive': [422], 'result': [423], 'among': [424], 'without': [428, 1063], 'condition.': [430, 1328, 1393], 'found': [435], '<3.2%': [441, 450], 'maximized': [442, 1251], 'they,': [446], 'therefore,': [447], 'chose': [448], '"fibrinolysis': [453], 'shutdown"': [454], 'patient.': [457], 'Using': [458], 'cut-point,': [460, 1072, 1817], '42%': [466], '(95%': [467, 477], 'confidence': [468], 'interval': [469], '[CI],': [470], '27%–57%)': [471], '76%': [476], 'CI,': [478], '51%–88%)': [479], 'predicting': [481, 1324, 1389], 'However,': [486, 913, 1142], 'striking': [488], 'gap': [489], 'prompt': [500], 'ask': [503], 'method': [510, 678, 775, 1286], 'define': [512, 1170], 'cutoff—at': [515], 'least': [516, 1181, 1205, 1210, 1763], 'situation—and': [519], 'question': [521], 'other': [525, 1052, 1451, 1544, 1780], 'available': [526, 1061], 'methods.': [527], 'For': [528, 718, 1608], 'example,': [529, 1198, 1609], 'if': [530, 551, 681, 687, 914, 1092, 1878], 'equally': [535, 555, 670, 1021, 1283], 'important,': [536, 556, 671, 1015, 1022, 1284], 'similar?3': [549], 'And': [550, 585], 'reflected': [561], 'choice': [564, 1029], 'cut-point?': [568], 'Finally,': [569, 742, 1767], 'times': [572], 'when': [573, 781, 843, 857, 1017, 1042, 1618, 1742], 'no': [574], 'worthy': [577], 'being': [579, 949, 1179, 1519], 'published': [580], 'practice?': [584], 'tell?': [589], 'FORK': [590], 'IN': [591], 'THE': [592], 'ROAD': [593], 'There': [594], 'are,': [595], 'fact,': [597], 'several': [598], 'methods': [599, 1053], 'cutoff.4': [608], 'Perhaps': [609], 'most': [610], 'commonly,': [611], 'both': [621, 660, 1252, 1547], '(not': [625], 'sum,': [627], 'index).': [631], 'This': [632, 853, 1904, 1917], 'point': [636, 703, 933, 1399, 1462], 'curve': [640, 1262, 1291], 'equal,': [647], 'close': [650, 731], 'possible': [654, 1147], 'given': [657, 995, 1050, 1232, 1885], 'data.': [658, 1916], 'Maximizing': [659], 'assumes': [664], 'so': [673], 'use': [680, 1089, 1572, 1874], 'prerequisite,': [685], 'it': [688, 839, 918, 1037, 1093, 1143, 1301, 1522, 1668, 1782], 'known': [691, 846], 'important.': [695, 852], 'Another': [696], 'option': [697], 'smallest': [707], 'distance': [708], 'upper': [711], 'left': [712], 'corner': [713], 'curve.': [717, 1607], 'strong': [720, 1480, 1568, 1729], 'predictor,': [721], 'will': [724, 1082, 1687], 'often': [725, 1476], 'coincide': [726], 'very': [730, 785, 886], 'first': [734, 1099], 'method:': [735], 'equalizing': [738, 777], 'specificity.': [741, 820, 927, 1003, 1255, 1403, 1641], 'used,': [755], 'al.1': [761], 'Cut-points': [762], 'tend': [769], 'closer': [772], 'strong,': [786], 'corresponding': [787], 'high': [793, 965], '(eg,': [794, 875], '>0.80).': [795], 'But': [796, 1364], 'was': [798, 812, 1919], 'apparently': [799], 'situation': [802, 904], 'because': [808, 827, 856, 967, 987], '<0.50,': [813], 'enormous': [816], '0.34': [817], 'lower': [818, 1163], 'than': [819, 1002, 1888], 'claim': [825], 'does': [830], 'definition,': [833], 'favor': [834], 'either': [835, 1009, 1235, 1693, 1820], 'useful': [842, 1539], 'neither': [844, 1526], 'assumed': [848], 'spurious': [855], 'strongly': [862], 'associated': [863], 'outcome,': [866], 'moderate': [872], '<0.80),': [877], 'produce': [881], '"best"': [882], 'cut-points': [883, 1872], 'different': [887], 'their': [894, 1582], 'own': [895], 'data': [896, 1808], 'set.': [897], 'approach': [900], 'any': [910, 1673, 1733, 1779], 'cut-point.': [912], 'chosen,': [917], 'optimally': [920], 'similar': [924], 'correctly': [932], 'situations': [937, 1006], 'theirs,': [940], 'new': [944], 'clinical': [945, 1227, 1274, 1681], 'tool': [947], 'introduced': [950], 'into': [951], 'practice': [952, 1091, 1876], 'severe': [956], 'higher': [959, 1000], 'generally': [962, 1500], 'preferred': [963], 'over': [964], 'interested': [970], 'reducing': [972], 'findings.': [974], 'It': [975], 'appears': [976], 'were': [982, 1514], 'fortunate': [983], 'regard': [986], 'could': [990], 'just': [992], 'easily': [994], 'cutoff': [997, 1270], 'considerably': [999], 'Therefore,': [1004], 'deemed': [1020, 1282], 'probably': [1032], 'used.': [1035], 'Actually,': [1036], 'difficult': [1039, 1670], 'see': [1041], 'option,': [1049], 'achieve': [1054], 'goal': [1056], 'providing': [1058], 'limitations.': [1065], 'STUDY': [1066], 'DESIGN': [1067], 'seeking': [1069], 'specify': [1075], 'design': [1078], 'phase': [1079], 'only': [1083, 1632, 1853, 1877], 'recommended': [1087, 1190], 'meets': [1094, 1153], 'criteria.': [1096], 'A': [1097, 1320, 1385, 1405, 1706, 1789], 'reasonable': [1098], 'step': [1100], 'state': [1104], 'minimally': [1106, 1520], 'acceptable': [1107], 'AUC,': [1110], '0.75,': [1113], 'before': [1114, 1185], 'searching': [1115, 1288], 'Note': [1123], '0.75': [1128, 1469, 1557], '50%': [1130], 'way': [1133], '(random': [1136], 'guessing)': [1137], '(perfect': [1140], 'discrimination).': [1141], 'still': [1144], 'study': [1155, 1849], 'criterion': [1156], 'AUC.': [1164], 'Next,': [1165], 'authors': [1166, 1194], 'priori': [1169, 1517], 'minimal': [1171], 'criteria': [1172], 'like': [1177], '70%': [1182], '75%,': [1184], 'practice.': [1192, 1541, 1574, 1682, 1737], 'Alternatively,': [1193], 'specify,': [1196], 'needs': [1201], '90%': [1206], '65%,': [1211], 'vice': [1213], 'versa,': [1214], 'depending': [1215], 'errors': [1221], 'problematic': [1224], 'application.3': [1228], 'If,': [1229, 1276], 'study,': [1233, 1776], 'making': [1234], 'decisions': [1239], 'clinically': [1241], 'worse,': [1242], 'Given': [1256], 'particular': [1258, 1638, 1734], 'specifications,': [1259], 'searched': [1265], 'maximize': [1267, 1293], 'potential': [1269], 'while': [1271], 'fulfilling': [1272], 'requirements.': [1275], 'indeed,': [1277], 'them': [1296], 'seems': [1297], 'extremely': [1298], 'useful,': [1299], 'avoid': [1303, 1717], 'pitfalls': [1305], 'index.': [1308], 'Figure,': [1311], '2': [1314], 'exemplary': [1315], 'curves': [1317, 1382], 'representing': [1318], 'biomarkers': [1319, 1384], 'B,': [1322, 1387], 'binary': [1326, 1391], 'disease': [1327, 1392], 'Notice': [1329], 'A,': [1333], 'highest': [1338, 1408], '0.55': [1348, 1357, 1427], '0.85,': [1353, 1432], '0.85': [1359], '0.40.': [1363], '0.30': [1368, 1438], '0.65.Figure.:': [1380], 'Data': [1394], 'parentheses': [1396], 'Biomarker': [1404], 'its': [1407], '(sensitivity': [1412], '1)': [1416], '0.40': [1418], 'equalizes': [1443, 1464], '0.65.': [1448], 'On': [1449, 1542], 'hand,': [1452, 1545], 'B': [1458, 1553], 'clearly': [1460], "(Youden's": [1470], '0.50),': [1473], 'considered': [1478, 1566], 'sufficiently': [1479, 1538, 1567], 'diagnostic': [1481, 1569, 1585, 1743, 1847, 1879], 'accuracy': [1482, 1570, 1586, 1744, 1848, 1880], 'practical': [1484], 'use.': [1485], 'Simply': [1486], 'recommended.': [1501], 'indicates': [1503], 'characteristic.Depending': [1506], 'what': [1508], 'values': [1509], 'specific': [1513], 'identified': [1515], 'sufficient,': [1521], 'adequate': [1530, 1676], 'combination': [1531], 'maximizing': [1546], 'yields': [1554], 'estimates': [1555], 'each,': [1559], 'which,': [1560], 'many': [1562, 1809], 'applications,': [1563], 'some': [1576], 'situations,': [1577, 1685], 'investigators': [1578], 'want': [1579, 1612, 1630], 'restrict': [1581], 'estimate': [1583, 1614, 1633], 'range': [1592, 1600], 'specificities,': [1594], 'consider': [1597], 'entire': [1599], '"partial"': [1616], 'limited': [1621, 1653], '0.70': [1624], '0.90,': [1626], 'scenarios,': [1644], 'desired': [1656], 'area': [1657], 'inference.3': [1659], 'Not': [1660], 'uncommonly,': [1661], 'low,': [1666], 'obtain': [1672], 'certainly': [1688], 'regions': [1690], 'may': [1697, 1752], 'adequate,': [1699], 'but': [1700], 'both—such': [1702], 'Figure.': [1709], 'Researchers': [1710, 1869], 'shy': [1713], 'away': [1714], 'concluding': [1718], 'relationship': [1721], 'enough': [1730], 'recommend': [1732, 1871], 'To': [1738], 'make': [1739], 'recommendation': [1741], 'measured': [1745], 'weak': [1751], 'put': [1753], 'risk,': [1756], 'lead': [1757], 'unnecessary': [1759], 'testing,': [1760], 'poor': [1765], 'decision-making.': [1766], 'whenever': [1768], 'estimate,': [1781], 'accompanied': [1785], 'CI.': [1788], 'CI': [1790, 1826], 'bootstrap': [1799], 'resampling': [1800, 1806], 'replacement,': [1802], 'involves': [1804], 'times,': [1810], 'time': [1813], 'estimating': [1814], 'obtaining': [1819], 'standard': [1822], 'error': [1823], 'distribution': [1829], 'cut-points.5': [1833], 'conclusion,': [1835], 'done': [1852], 'after': [1854], 'careful': [1855], 'consideration': [1856], 'relative': [1859], 'costs': [1860], 'adverse': [1862], 'ramifications': [1863], 'errors.': [1868], 'sufficient': [1882], 'situation,': [1886], 'rather': [1887], 'blindly': [1889], 'maneuvering': [1890], 'proverbial': [1892], 'road.': [1896], 'DISCLOSURES': [1897], 'Name:': [1898], 'Edward': [1899], 'J.': [1900], 'Mascha,': [1901], 'PhD.': [1902], 'Contribution:': [1903], 'author': [1905], 'helped': [1906], 'design,': [1907], 'write,': [1908], 'revise': [1910], 'manuscript;': [1912], 'analyze': [1914], 'manuscript': [1918], 'handled': [1920], 'by:': [1921], 'Thomas': [1922], 'R.': [1923], 'Vetter,': [1924], 'MD,': [1925], 'MPH.': [1926]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2895594311', 'counts_by_year': [{'year': 2024, 'cited_by_count': 3}, {'year': 2023, 'cited_by_count': 1}, {'year': 2022, 'cited_by_count': 3}, {'year': 2021, 'cited_by_count': 7}, {'year': 2020, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 2}, {'year': 2018, 'cited_by_count': 1}], 'updated_date': '2024-12-17T02:51:34.253729', 'created_date': '2018-10-12'}