Abstract:본 연구에서는 천연자원으로부터 α-, β- 및 γ-chitin을 분리하였고, 이를 이용하여 α-, β- 및 γ-chitosan을 제조하였다. 원재료의 화학적 조성과 chitin과 chitosan의 일반성분을 분석하였으며 상대점도측정과 Kina 적정법을 이용하여 점도평균분자량과 탈아세틸화도를 측정하였고 FT-IR spectrophotometer, soild ...본 연구에서는 천연자원으로부터 α-, β- 및 γ-chitin을 분리하였고, 이를 이용하여 α-, β- 및 γ-chitosan을 제조하였다. 원재료의 화학적 조성과 chitin과 chitosan의 일반성분을 분석하였으며 상대점도측정과 Kina 적정법을 이용하여 점도평균분자량과 탈아세틸화도를 측정하였고 FT-IR spectrophotometer, soild state CP/MAS ^(13)C NMR spectrophotometer 에 의해 α-, β- 및 γ-chitin과 chitosan의 제조를 확인하였다. α-, β- 및 γ-chitin의 각각의 분자량이 701, 612 그리고 524 kDa으로 측정되었으며 α-, β-및 γ-chitosan의 분자량이 603, 607, 329 kDa임을 확인하였다. α-, β-및 γ-chitin의 탈아세틸화도가 21.8%, 3?.3% 그리고 44.7%로 확인되었고 α-, β- 및 γ-chitosan의 탈아세틸화도가 97.1%, 99.2%, 그리고 96.6% 임을 확인하였다. Chitin의 FT-IR 스펙트럼에서 amide I에서의 흡수 밴드가 α-chitin에 있어서는 이중선으로, β-chitin에 있어서는 단일선으로 나타났으며 γ-chitin에서는 α-, β-chitin의 중간형태로 나타났음을 확인하였다. Chitosan의 FT-IR 스펙트럼에서 탈아세틸화 반응에 의해 amide Ⅰ과 amide Ⅱ의 흡수 피크가 현저히 감소하였음을 확인하였다. Chitin의 Solide state CP/MAS ^(13)C NMR 스펙트럼결과에서 α-chitin의 경우 C3과 C5의 피크가 각각 73과 75 ppm에서 나타났으며 β-chitin은 74 ppm에서 단일선으로 나타났고, γ-chitin의 경우 C3과 C5의 흡수피크가 α-chitin과 유사한 형태의 피크를 나타내었다. Chitosan의 Soilde state CP/MAS ^(13) NMR 스펙트럼에서 C1~C6가 잘 나타나 있고, 탈아세틸화 반응에 의해 메틸탄소 및 카르보닐 탄소가 거의 나타나지 않았다.Read More
Publication Year: 2004
Publication Date: 2004-01-01
Language: ko
Type: article
Access and Citation
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot