Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2889834673', 'doi': 'https://doi.org/10.23919/icif.2018.8455564', 'title': 'A Variational Bayesian Labeled Multi-Bernoulli Filter for Tracking with Inverse Wishart Distribution', 'display_name': 'A Variational Bayesian Labeled Multi-Bernoulli Filter for Tracking with Inverse Wishart Distribution', 'publication_year': 2018, 'publication_date': '2018-07-01', 'ids': {'openalex': 'https://openalex.org/W2889834673', 'doi': 'https://doi.org/10.23919/icif.2018.8455564', 'mag': '2889834673'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.23919/icif.2018.8455564', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'proceedings-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5024002297', 'display_name': 'Jinran Wang', 'orcid': None}, 'institutions': [{'id': 'https://openalex.org/I183067930', 'display_name': 'Shanghai Jiao Tong University', 'ror': 'https://ror.org/0220qvk04', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I183067930']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Jinran Wang', 'raw_affiliation_strings': ['School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China'], 'affiliations': [{'raw_affiliation_string': 'School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China', 'institution_ids': ['https://openalex.org/I183067930']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5032543777', 'display_name': 'Zhongliang Jing', 'orcid': 'https://orcid.org/0000-0003-1759-8785'}, 'institutions': [{'id': 'https://openalex.org/I183067930', 'display_name': 'Shanghai Jiao Tong University', 'ror': 'https://ror.org/0220qvk04', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I183067930']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Zhongliang Jing', 'raw_affiliation_strings': ['School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China'], 'affiliations': [{'raw_affiliation_string': 'School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China', 'institution_ids': ['https://openalex.org/I183067930']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5064709823', 'display_name': 'Peng Dong', 'orcid': 'https://orcid.org/0000-0001-7199-1583'}, 'institutions': [{'id': 'https://openalex.org/I183067930', 'display_name': 'Shanghai Jiao Tong University', 'ror': 'https://ror.org/0220qvk04', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I183067930']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Peng Dong', 'raw_affiliation_strings': ['School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China'], 'affiliations': [{'raw_affiliation_string': 'School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China', 'institution_ids': ['https://openalex.org/I183067930']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5102924626', 'display_name': 'Cheng Jin', 'orcid': 'https://orcid.org/0000-0002-6993-240X'}, 'institutions': [{'id': 'https://openalex.org/I4210120144', 'display_name': 'Beijing Jingshida Electromechanical Equipment Research Institute', 'ror': 'https://ror.org/02vx4zx98', 'country_code': 'CN', 'type': 'facility', 'lineage': ['https://openalex.org/I4210120144']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'Jin Cheng', 'raw_affiliation_strings': ['Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing Electro-mechanical Engineering Institute, Beijing, China'], 'affiliations': [{'raw_affiliation_string': 'Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing Electro-mechanical Engineering Institute, Beijing, China', 'institution_ids': ['https://openalex.org/I4210120144']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 0.123, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 3, 'citation_normalized_percentile': {'value': 0.492655, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 74, 'max': 77}, 'biblio': {'volume': None, 'issue': None, 'first_page': '219', 'last_page': '225'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10711', 'display_name': 'Target Tracking and Data Fusion in Sensor Networks', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10711', 'display_name': 'Target Tracking and Data Fusion in Sensor Networks', 'score': 0.9999, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12814', 'display_name': 'Gaussian Processes and Bayesian Inference', 'score': 0.9609, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12879', 'display_name': 'Distributed Sensor Networks and Detection Algorithms', 'score': 0.9517, 'subfield': {'id': 'https://openalex.org/subfields/1705', 'display_name': 'Computer Networks and Communications'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/inverse-wishart-distribution', 'display_name': 'Inverse-Wishart distribution', 'score': 0.97100544}, {'id': 'https://openalex.org/keywords/matrix-t-distribution', 'display_name': 'Matrix t-distribution', 'score': 0.5489718}, {'id': 'https://openalex.org/keywords/inverse-gamma-distribution', 'display_name': 'Inverse-gamma distribution', 'score': 0.50376076}, {'id': 'https://openalex.org/keywords/bernoulli-distribution', 'display_name': 'Bernoulli distribution', 'score': 0.50217485}, {'id': 'https://openalex.org/keywords/divergence', 'display_name': 'Divergence (linguistics)', 'score': 0.45979142}, {'id': 'https://openalex.org/keywords/beta-distribution', 'display_name': 'Beta distribution', 'score': 0.44413507}], 'concepts': [{'id': 'https://openalex.org/C40851411', 'wikidata': 'https://www.wikidata.org/wiki/Q3258368', 'display_name': 'Inverse-Wishart distribution', 'level': 4, 'score': 0.97100544}, {'id': 'https://openalex.org/C33962027', 'wikidata': 'https://www.wikidata.org/wiki/Q1930697', 'display_name': 'Wishart distribution', 'level': 3, 'score': 0.8082211}, {'id': 'https://openalex.org/C178650346', 'wikidata': 'https://www.wikidata.org/wiki/Q201984', 'display_name': 'Covariance', 'level': 2, 'score': 0.5904091}, {'id': 'https://openalex.org/C43514536', 'wikidata': 'https://www.wikidata.org/wiki/Q17098779', 'display_name': 'Matrix t-distribution', 'level': 4, 'score': 0.5489718}, {'id': 'https://openalex.org/C79334102', 'wikidata': 'https://www.wikidata.org/wiki/Q3072268', 'display_name': 'Ensemble Kalman filter', 'level': 4, 'score': 0.516816}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.5087097}, {'id': 'https://openalex.org/C4646027', 'wikidata': 'https://www.wikidata.org/wiki/Q3258521', 'display_name': 'Inverse-gamma distribution', 'level': 5, 'score': 0.50376076}, {'id': 'https://openalex.org/C27956954', 'wikidata': 'https://www.wikidata.org/wiki/Q391371', 'display_name': 'Bernoulli distribution', 'level': 3, 'score': 0.50217485}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.48256937}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.4800766}, {'id': 'https://openalex.org/C106131492', 'wikidata': 'https://www.wikidata.org/wiki/Q3072260', 'display_name': 'Filter (signal processing)', 'level': 2, 'score': 0.46128172}, {'id': 'https://openalex.org/C207390915', 'wikidata': 'https://www.wikidata.org/wiki/Q1230525', 'display_name': 'Divergence (linguistics)', 'level': 2, 'score': 0.45979142}, {'id': 'https://openalex.org/C21621910', 'wikidata': 'https://www.wikidata.org/wiki/Q756254', 'display_name': 'Beta distribution', 'level': 2, 'score': 0.44413507}, {'id': 'https://openalex.org/C28826006', 'wikidata': 'https://www.wikidata.org/wiki/Q33521', 'display_name': 'Applied mathematics', 'level': 1, 'score': 0.44262755}, {'id': 'https://openalex.org/C185142706', 'wikidata': 'https://www.wikidata.org/wiki/Q1134404', 'display_name': 'Covariance matrix', 'level': 2, 'score': 0.42995125}, {'id': 'https://openalex.org/C57830394', 'wikidata': 'https://www.wikidata.org/wiki/Q278079', 'display_name': 'Posterior probability', 'level': 3, 'score': 0.42478317}, {'id': 'https://openalex.org/C163716315', 'wikidata': 'https://www.wikidata.org/wiki/Q901177', 'display_name': 'Gaussian', 'level': 2, 'score': 0.42434442}, {'id': 'https://openalex.org/C149717495', 'wikidata': 'https://www.wikidata.org/wiki/Q117806', 'display_name': 'Gamma distribution', 'level': 2, 'score': 0.41754863}, {'id': 'https://openalex.org/C157286648', 'wikidata': 'https://www.wikidata.org/wiki/Q846780', 'display_name': 'Kalman filter', 'level': 2, 'score': 0.4157068}, {'id': 'https://openalex.org/C152361515', 'wikidata': 'https://www.wikidata.org/wiki/Q181328', 'display_name': "Bernoulli's principle", 'level': 2, 'score': 0.4130609}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.41288105}, {'id': 'https://openalex.org/C206833254', 'wikidata': 'https://www.wikidata.org/wiki/Q5421817', 'display_name': 'Extended Kalman filter', 'level': 3, 'score': 0.40371862}, {'id': 'https://openalex.org/C180877172', 'wikidata': 'https://www.wikidata.org/wiki/Q5401390', 'display_name': 'Estimation of covariance matrices', 'level': 3, 'score': 0.37665963}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.3151542}, {'id': 'https://openalex.org/C149441793', 'wikidata': 'https://www.wikidata.org/wiki/Q200726', 'display_name': 'Probability distribution', 'level': 2, 'score': 0.27732122}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.24475944}, {'id': 'https://openalex.org/C57205106', 'wikidata': 'https://www.wikidata.org/wiki/Q3258519', 'display_name': 'Inverse-chi-squared distribution', 'level': 4, 'score': 0.17620584}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.13817638}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.09225786}, {'id': 'https://openalex.org/C161584116', 'wikidata': 'https://www.wikidata.org/wiki/Q1952580', 'display_name': 'Multivariate statistics', 'level': 2, 'score': 0.081009656}, {'id': 'https://openalex.org/C160947583', 'wikidata': 'https://www.wikidata.org/wiki/Q2083147', 'display_name': 'Distribution fitting', 'level': 3, 'score': 0.08049154}, {'id': 'https://openalex.org/C97355855', 'wikidata': 'https://www.wikidata.org/wiki/Q11473', 'display_name': 'Thermodynamics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C122123141', 'wikidata': 'https://www.wikidata.org/wiki/Q176623', 'display_name': 'Random variable', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.23919/icif.2018.8455564', 'pdf_url': None, 'source': None, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'display_name': 'No poverty', 'id': 'https://metadata.un.org/sdg/1', 'score': 0.45}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 20, 'referenced_works': ['https://openalex.org/W1557595030', 'https://openalex.org/W1909771825', 'https://openalex.org/W1968605305', 'https://openalex.org/W1978705731', 'https://openalex.org/W2014787937', 'https://openalex.org/W2023428235', 'https://openalex.org/W2049244691', 'https://openalex.org/W2068974335', 'https://openalex.org/W2084220166', 'https://openalex.org/W2103816858', 'https://openalex.org/W2105905583', 'https://openalex.org/W2110354007', 'https://openalex.org/W2115979064', 'https://openalex.org/W2126885789', 'https://openalex.org/W2131557396', 'https://openalex.org/W2154353836', 'https://openalex.org/W2347296445', 'https://openalex.org/W2511267233', 'https://openalex.org/W2615536673', 'https://openalex.org/W34992941'], 'related_works': ['https://openalex.org/W282690897', 'https://openalex.org/W2389605595', 'https://openalex.org/W2385446126', 'https://openalex.org/W2378153412', 'https://openalex.org/W2087278778', 'https://openalex.org/W1987859003', 'https://openalex.org/W1987758777', 'https://openalex.org/W1981092891', 'https://openalex.org/W1570411980', 'https://openalex.org/W1555514972'], 'abstract_inverted_index': {'In': [0, 48], 'multi-target': [1], 'tracking': [2], '(MTT),': [3], 'the': [4, 31, 35, 64, 87, 94, 98, 101, 107, 125, 129, 140, 153, 158], 'imprecise': [5], 'model': [6], 'for': [7], 'sensor': [8, 66], 'characteristics': [9], 'might': [10], 'result': [11], 'in': [12], 'poor': [13], 'performance.': [14], 'The': [15, 68, 118], 'Variational': [16], 'Bayesian': [17, 115], 'labeled': [18], 'multi-Bernoulli': [19], '(VB-LMB)': [20], 'filter': [21, 38, 53, 156], 'based': [22], 'on': [23], 'Gamma': [24, 95, 159], 'distribution': [25, 57, 81], 'can': [26, 110], 'handle': [27], 'this': [28, 49], 'problem.': [29], 'However,': [30], 'predictive': [32, 119], 'likelihood': [33, 120], 'of': [34], 'existing': [36, 154], 'VB-LMB': [37, 52, 155], 'is': [39, 46, 58, 72, 121, 136], 'simply': [40], 'treated': [41], 'as': [42, 74], 'a': [43, 51], 'Gaussian,': [44], 'which': [45], 'inaccurate.': [47], 'paper,': [50], 'with': [54, 86, 93, 157], 'inverse': [55, 76], 'Wishart': [56, 77], 'presented': [59], 'to': [60, 84, 138], 'perform': [61], 'MTT': [62, 134], 'under': [63], 'unknown': [65], 'characteristics.': [67], 'measurement': [69, 102], 'noise': [70, 89, 103], 'covariance': [71, 90, 104], 'modeled': [73], 'an': [75], '(IW)': [78], 'distribution.': [79, 96, 160], 'This': [80], 'has': [82, 149], 'potential': [83], 'deal': [85], 'full': [88], 'matrix': [91], 'compared': [92], 'Since': [97], 'state': [99], 'and': [100], 'are': [105], 'coupled,': [106], 'updated': [108], 'equation': [109], 'be': [111], 'solved': [112], 'by': [113, 128], 'variational': [114], '(VB)': [116], 'method.': [117, 142], 'calculated': [122], 'via': [123], 'minimizing': [124], 'Kullback-Leibler': [126], 'divergence': [127], 'VB': [130], 'lower': [131], 'bound.': [132], 'A': [133], 'scenario': [135], 'used': [137], 'evaluate': [139], 'proposed': [141], 'Simulation': [143], 'results': [144], 'show': [145], 'that': [146], 'our': [147], 'approach': [148], 'better': [150], 'performance': [151], 'than': [152]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2889834673', 'counts_by_year': [{'year': 2024, 'cited_by_count': 1}, {'year': 2020, 'cited_by_count': 1}, {'year': 2019, 'cited_by_count': 1}], 'updated_date': '2024-12-13T12:40:13.178676', 'created_date': '2018-09-27'}