Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W2886555888', 'doi': 'https://doi.org/10.1016/j.tplants.2018.07.004', 'title': 'Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives', 'display_name': 'Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives', 'publication_year': 2018, 'publication_date': '2018-08-10', 'ids': {'openalex': 'https://openalex.org/W2886555888', 'doi': 'https://doi.org/10.1016/j.tplants.2018.07.004', 'mag': '2886555888', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/30104148'}, 'language': 'en', 'primary_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.tplants.2018.07.004', 'pdf_url': 'https://www.cell.com/article/S1360138518301572/pdf', 'source': {'id': 'https://openalex.org/S201780205', 'display_name': 'Trends in Plant Science', 'issn_l': '1360-1385', 'issn': ['1360-1385', '1878-4372'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'type': 'review', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': True, 'oa_status': 'hybrid', 'oa_url': 'https://www.cell.com/article/S1360138518301572/pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5027870420', 'display_name': 'Asheesh K. Singh', 'orcid': 'https://orcid.org/0000-0002-7522-037X'}, 'institutions': [{'id': 'https://openalex.org/I173911158', 'display_name': 'Iowa State University', 'ror': 'https://ror.org/04rswrd78', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I173911158']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Asheesh Kumar Singh', 'raw_affiliation_strings': ['Department of Agronomy, Iowa State University, Ames, IA, USA'], 'affiliations': [{'raw_affiliation_string': 'Department of Agronomy, Iowa State University, Ames, IA, USA', 'institution_ids': ['https://openalex.org/I173911158']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5011704511', 'display_name': 'Baskar Ganapathysubramanian', 'orcid': 'https://orcid.org/0000-0002-8931-4852'}, 'institutions': [{'id': 'https://openalex.org/I173911158', 'display_name': 'Iowa State University', 'ror': 'https://ror.org/04rswrd78', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I173911158']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'Baskar Ganapathysubramanian', 'raw_affiliation_strings': ['Department of Mechanical Engineering, Iowa State University, Ames, IA, USA'], 'affiliations': [{'raw_affiliation_string': 'Department of Mechanical Engineering, Iowa State University, Ames, IA, USA', 'institution_ids': ['https://openalex.org/I173911158']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5081037761', 'display_name': 'Soumik Sarkar', 'orcid': 'https://orcid.org/0000-0002-6775-9199'}, 'institutions': [{'id': 'https://openalex.org/I173911158', 'display_name': 'Iowa State University', 'ror': 'https://ror.org/04rswrd78', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I173911158']}], 'countries': ['US'], 'is_corresponding': True, 'raw_author_name': 'Soumik Sarkar', 'raw_affiliation_strings': ['Department of Mechanical Engineering, Iowa State University, Ames, IA, USA'], 'affiliations': [{'raw_affiliation_string': 'Department of Mechanical Engineering, Iowa State University, Ames, IA, USA', 'institution_ids': ['https://openalex.org/I173911158']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5091680686', 'display_name': 'Arti Singh', 'orcid': 'https://orcid.org/0000-0001-6191-9238'}, 'institutions': [{'id': 'https://openalex.org/I173911158', 'display_name': 'Iowa State University', 'ror': 'https://ror.org/04rswrd78', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I173911158']}], 'countries': ['US'], 'is_corresponding': True, 'raw_author_name': 'Arti Singh', 'raw_affiliation_strings': ['Department of Agronomy, Iowa State University, Ames, IA, USA'], 'affiliations': [{'raw_affiliation_string': 'Department of Agronomy, Iowa State University, Ames, IA, USA', 'institution_ids': ['https://openalex.org/I173911158']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 1, 'corresponding_author_ids': ['https://openalex.org/A5081037761', 'https://openalex.org/A5091680686'], 'corresponding_institution_ids': ['https://openalex.org/I173911158', 'https://openalex.org/I173911158'], 'apc_list': {'value': 6830, 'currency': 'USD', 'value_usd': 6830, 'provenance': 'doaj'}, 'apc_paid': {'value': 6830, 'currency': 'USD', 'value_usd': 6830, 'provenance': 'doaj'}, 'fwci': 6.628, 'has_fulltext': True, 'fulltext_origin': 'ngrams', 'cited_by_count': 502, 'citation_normalized_percentile': {'value': 0.998776, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 99, 'max': 100}, 'biblio': {'volume': '23', 'issue': '10', 'first_page': '883', 'last_page': '898'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10616', 'display_name': 'Smart Agriculture and AI', 'score': 0.9988, 'subfield': {'id': 'https://openalex.org/subfields/1110', 'display_name': 'Plant Science'}, 'field': {'id': 'https://openalex.org/fields/11', 'display_name': 'Agricultural and Biological Sciences'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10616', 'display_name': 'Smart Agriculture and AI', 'score': 0.9988, 'subfield': {'id': 'https://openalex.org/subfields/1110', 'display_name': 'Plant Science'}, 'field': {'id': 'https://openalex.org/fields/11', 'display_name': 'Agricultural and Biological Sciences'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, {'id': 'https://openalex.org/T14365', 'display_name': 'Leaf Properties and Growth Measurement', 'score': 0.9898, 'subfield': {'id': 'https://openalex.org/subfields/1110', 'display_name': 'Plant Science'}, 'field': {'id': 'https://openalex.org/fields/11', 'display_name': 'Agricultural and Biological Sciences'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}, {'id': 'https://openalex.org/T12093', 'display_name': 'Greenhouse Technology and Climate Control', 'score': 0.9705, 'subfield': {'id': 'https://openalex.org/subfields/1110', 'display_name': 'Plant Science'}, 'field': {'id': 'https://openalex.org/fields/11', 'display_name': 'Agricultural and Biological Sciences'}, 'domain': {'id': 'https://openalex.org/domains/1', 'display_name': 'Life Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/plant-science', 'display_name': 'Plant science', 'score': 0.5609414}], 'concepts': [{'id': 'https://openalex.org/C86803240', 'wikidata': 'https://www.wikidata.org/wiki/Q420', 'display_name': 'Biology', 'level': 0, 'score': 0.8691813}, {'id': 'https://openalex.org/C2994435560', 'wikidata': 'https://www.wikidata.org/wiki/Q441', 'display_name': 'Plant science', 'level': 2, 'score': 0.5609414}, {'id': 'https://openalex.org/C2992936677', 'wikidata': 'https://www.wikidata.org/wiki/Q441', 'display_name': 'Plant biology', 'level': 2, 'score': 0.44515827}, {'id': 'https://openalex.org/C21036866', 'wikidata': 'https://www.wikidata.org/wiki/Q181767', 'display_name': 'Stress (linguistics)', 'level': 2, 'score': 0.42188787}, {'id': 'https://openalex.org/C70721500', 'wikidata': 'https://www.wikidata.org/wiki/Q177005', 'display_name': 'Computational biology', 'level': 1, 'score': 0.40199727}, {'id': 'https://openalex.org/C59822182', 'wikidata': 'https://www.wikidata.org/wiki/Q441', 'display_name': 'Botany', 'level': 1, 'score': 0.18538228}, {'id': 'https://openalex.org/C41895202', 'wikidata': 'https://www.wikidata.org/wiki/Q8162', 'display_name': 'Linguistics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C138885662', 'wikidata': 'https://www.wikidata.org/wiki/Q5891', 'display_name': 'Philosophy', 'level': 0, 'score': 0.0}], 'mesh': [{'descriptor_ui': 'D001901', 'descriptor_name': 'Botany', 'qualifier_ui': 'Q000379', 'qualifier_name': 'methods', 'is_major_topic': True}, {'descriptor_ui': 'D000077321', 'descriptor_name': 'Deep Learning', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D010641', 'descriptor_name': 'Phenotype', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D018521', 'descriptor_name': 'Plant Physiological Phenomena', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D001901', 'descriptor_name': 'Botany', 'qualifier_ui': 'Q000295', 'qualifier_name': 'instrumentation', 'is_major_topic': False}, {'descriptor_ui': 'D001901', 'descriptor_name': 'Botany', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D013312', 'descriptor_name': 'Stress, Physiological', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 3, 'locations': [{'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.tplants.2018.07.004', 'pdf_url': 'https://www.cell.com/article/S1360138518301572/pdf', 'source': {'id': 'https://openalex.org/S201780205', 'display_name': 'Trends in Plant Science', 'issn_l': '1360-1385', 'issn': ['1360-1385', '1878-4372'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': True, 'landing_page_url': 'https://lib.dr.iastate.edu/agron_pubs/550', 'pdf_url': 'https://dr.lib.iastate.edu/bitstreams/7d2957ac-5036-4655-bd10-05a278b1c84a/download', 'source': {'id': 'https://openalex.org/S4377196104', 'display_name': 'Iowa State University Digital Repository (Iowa State University)', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I173911158', 'host_organization_name': 'Iowa State University', 'host_organization_lineage': ['https://openalex.org/I173911158'], 'host_organization_lineage_names': ['Iowa State University'], 'type': 'repository'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/30104148', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'https://doi.org/10.1016/j.tplants.2018.07.004', 'pdf_url': 'https://www.cell.com/article/S1360138518301572/pdf', 'source': {'id': 'https://openalex.org/S201780205', 'display_name': 'Trends in Plant Science', 'issn_l': '1360-1385', 'issn': ['1360-1385', '1878-4372'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320990', 'host_organization_name': 'Elsevier BV', 'host_organization_lineage': ['https://openalex.org/P4310320990'], 'host_organization_lineage_names': ['Elsevier BV'], 'type': 'journal'}, 'license': 'cc-by-nc-nd', 'license_id': 'https://openalex.org/licenses/cc-by-nc-nd', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 93, 'referenced_works': ['https://openalex.org/W14642108', 'https://openalex.org/W1522301498', 'https://openalex.org/W1606347560', 'https://openalex.org/W1686810756', 'https://openalex.org/W1836465849', 'https://openalex.org/W1849277567', 'https://openalex.org/W1889624880', 'https://openalex.org/W1993882792', 'https://openalex.org/W2004732416', 'https://openalex.org/W2005543329', 'https://openalex.org/W2076063813', 'https://openalex.org/W2091913822', 'https://openalex.org/W2095705004', 'https://openalex.org/W2100495367', 'https://openalex.org/W2101926813', 'https://openalex.org/W2102605133', 'https://openalex.org/W2105577021', 'https://openalex.org/W2108598243', 'https://openalex.org/W2112796928', 'https://openalex.org/W2117539524', 'https://openalex.org/W2132424367', 'https://openalex.org/W2141125852', 'https://openalex.org/W2143612262', 'https://openalex.org/W2145287260', 'https://openalex.org/W2152175008', 'https://openalex.org/W2155893237', 'https://openalex.org/W2183341477', 'https://openalex.org/W2185489349', 'https://openalex.org/W2186615578', 'https://openalex.org/W2194775991', 'https://openalex.org/W2254039850', 'https://openalex.org/W2274287116', 'https://openalex.org/W2280764670', 'https://openalex.org/W2353457699', 'https://openalex.org/W2395611524', 'https://openalex.org/W2402144811', 'https://openalex.org/W2470368200', 'https://openalex.org/W2470803522', 'https://openalex.org/W2473156356', 'https://openalex.org/W2513383847', 'https://openalex.org/W2531409750', 'https://openalex.org/W2557283755', 'https://openalex.org/W2570343428', 'https://openalex.org/W2584792494', 'https://openalex.org/W2593562180', 'https://openalex.org/W2599765304', 'https://openalex.org/W2604194943', 'https://openalex.org/W2604496315', 'https://openalex.org/W2614850301', 'https://openalex.org/W2625156409', 'https://openalex.org/W2636150609', 'https://openalex.org/W2730129132', 'https://openalex.org/W2733343268', 'https://openalex.org/W2734511492', 'https://openalex.org/W2737050655', 'https://openalex.org/W2747291751', 'https://openalex.org/W2752174551', 'https://openalex.org/W2752272426', 'https://openalex.org/W2753403518', 'https://openalex.org/W2758216428', 'https://openalex.org/W2758893285', 'https://openalex.org/W2763040271', 'https://openalex.org/W2765516633', 'https://openalex.org/W2767329619', 'https://openalex.org/W2768265868', 'https://openalex.org/W2774245783', 'https://openalex.org/W2776705292', 'https://openalex.org/W2780868291', 'https://openalex.org/W2784570262', 'https://openalex.org/W2789255992', 'https://openalex.org/W2790875963', 'https://openalex.org/W2793323341', 'https://openalex.org/W2799437918', 'https://openalex.org/W2807169760', 'https://openalex.org/W2949117887', 'https://openalex.org/W2949605076', 'https://openalex.org/W2949650786', 'https://openalex.org/W2949966795', 'https://openalex.org/W2951433694', 'https://openalex.org/W2951548327', 'https://openalex.org/W2951583185', 'https://openalex.org/W2952186574', 'https://openalex.org/W2952533583', 'https://openalex.org/W2952558436', 'https://openalex.org/W2953106684', 'https://openalex.org/W2963754008', 'https://openalex.org/W2964335273', 'https://openalex.org/W2964350391', 'https://openalex.org/W3100931193', 'https://openalex.org/W3106250896', 'https://openalex.org/W3147600416', 'https://openalex.org/W613643118', 'https://openalex.org/W639708223'], 'related_works': ['https://openalex.org/W4391375266', 'https://openalex.org/W2788277189', 'https://openalex.org/W2531345485', 'https://openalex.org/W2130076355', 'https://openalex.org/W2119695867', 'https://openalex.org/W2082860237', 'https://openalex.org/W2046158694', 'https://openalex.org/W2013243191', 'https://openalex.org/W1993764875', 'https://openalex.org/W1990804418'], 'abstract_inverted_index': {'Review': [0], 'of': [1, 21, 28, 53, 68, 87, 108, 122, 129, 148, 181, 206, 222, 236, 243, 262, 295, 320, 339, 384, 396, 430, 440, 462, 630, 651, 687, 716, 733, 772, 808, 822, 825, 834, 840, 851, 868, 878, 882, 886, 935, 989, 993, 1010, 1015, 1019, 1046, 1063, 1083, 1096, 1114, 1147, 1161, 1202, 1213, 1232, 1251, 1281, 1371, 1373, 1379, 1400, 1423, 1496, 1523, 1556, 1567, 1600, 1602, 1610, 1614, 1631, 1794, 1828, 1847, 1853, 1860, 1880, 1885, 1902, 1916, 1923, 2028, 2055, 2117, 2122, 2179, 2204, 2217, 2260, 2270, 2294, 2296, 2314, 2345, 2351, 2356, 2362, 2382, 2422, 2440, 2460, 2470, 2472, 2541, 2576, 2604, 2614, 2683, 2722, 2759, 2764, 2811, 2836, 2844, 2852, 2903, 2923, 2986, 3031, 3052, 3113, 3524, 3602, 3659, 3697, 3708, 3715, 3899, 3940, 3948, 3953, 3960, 3978, 3987, 4018, 4083], 'DL': [2, 22, 54, 69, 101, 165, 182, 212, 279, 296, 326, 483, 524, 561, 571, 1488, 1615, 1642, 1795, 1829, 1849, 1890, 2205, 2229, 2346, 2475, 2598, 2660, 2662, 2751, 2754, 2783, 3884, 3949, 3973, 4066], 'techniques': [3, 55, 1441, 1489, 1855, 2626, 4031, 4037], 'applied': [4, 1545, 2323], 'to': [5, 12, 77, 90, 118, 145, 190, 232, 259, 304, 411, 423, 478, 532, 540, 570, 614, 731, 765, 781, 861, 1043, 1103, 1164, 1328, 1339, 1385, 1413, 1430, 1502, 1520, 1546, 1552, 1635, 1665, 1835, 1877, 1931, 2045, 2047, 2199, 2228, 2298, 2324, 2373, 2406, 2593, 2689, 2715, 2728, 2798, 2875, 2885, 2897, 3922, 3955, 4010, 4032, 4048, 4063, 4109], 'plant': [6, 29, 32, 57, 63, 82, 142, 173, 215, 256, 287, 329, 388, 397, 444, 553, 621, 637, 654, 856, 874, 936, 954, 990, 1025, 1030, 1117, 1252, 1313, 1818, 3254, 3374, 3457, 3525, 3579, 3709, 3807, 3833, 3861], 'stress': [7, 33, 64, 83, 174, 288, 346, 357, 655, 664, 741, 773, 794, 991, 997, 1011, 1026, 1031, 1463, 3808], '(biotic': [8, 406], 'and': [9, 37, 50, 80, 85, 125, 131, 158, 196, 210, 239, 245, 272, 310, 324, 337, 382, 402, 407, 428, 442, 458, 475, 498, 547, 604, 607, 705, 775, 813, 904, 907, 929, 967, 970, 1007, 1012, 1021, 1080, 1122, 1195, 1217, 1295, 1338, 1343, 1358, 1367, 1369, 1486, 1573, 1593, 1651, 1696, 1721, 1740, 1776, 1792, 1826, 1921, 1929, 1972, 2014, 2101, 2130, 2161, 2212, 2343, 2365, 2390, 2399, 2426, 2454, 2477, 2499, 2579, 2591, 2617, 2623, 2647, 2651, 2670, 2704, 2740, 2749, 2762, 2770, 2841, 2849, 2892, 2894, 2954, 2983, 3007, 3042, 3218, 3257, 3407, 3455, 3469, 3551, 3581, 3699, 3718, 3762, 3776, 4028], 'abiotic)': [10], 'phenotyping': [11, 157, 271, 347, 358, 414, 656, 665, 1027, 1189, 1215, 1464, 1808, 3717], 'drive': [13], 'transformational': [14], 'changes': [15, 1363], 'in': [16, 56, 198, 214, 312, 328, 348, 359, 417, 420, 465, 482, 536, 593, 626, 653, 666, 750, 754, 888, 1100, 1107, 1116, 1356, 1364, 1465, 1586, 1785, 1803, 1839, 1943, 2035, 2039, 2087, 2207, 2224, 2239, 2276, 2376, 2573, 2597, 2607, 2611, 2630, 2667, 2719, 2813, 2838, 2872, 2888, 3025, 3045, 3056, 3091, 3721, 3875, 3917, 3945, 3967], 'agricultural': [17], 'sciences.': [18], 'Comparative': [19], 'assessment': [20, 180, 294, 1032, 1085, 1119, 1131, 1146, 1250], 'strategies': [23, 89, 1383], 'across': [24], 'a': [25, 60, 106, 115, 178, 220, 229, 292, 393, 455, 527, 542, 594, 627, 714, 726, 792, 804, 838, 858, 872, 889, 924, 945, 948, 1028, 1245, 1268, 1307, 1447, 1628, 1718, 1730, 1753, 1759, 1763, 1851, 1858, 1944, 1986, 2025, 2036, 2040, 2052, 2065, 2083, 2173, 2268, 2430, 2467, 2628, 2642, 2656, 2684, 2692, 2701, 2819, 2822, 2839, 2878, 3046, 3453, 3876, 3998, 4045], 'wide': [26, 1354, 2468], 'range': [27], 'species': [30], 'for': [31, 94, 98, 170, 284, 344, 355, 514, 619, 636, 662, 745, 1004, 1249, 1271, 1311, 1403, 1454, 1461, 1704, 1709, 1747, 1957, 1997, 2024, 2074, 2103, 2155, 2267, 2336, 2420, 2466, 2489, 2514, 2734, 2862, 2970, 3015, 3085, 3153, 3253, 3372, 3398, 3576, 3655, 3712, 3758, 3806, 3859, 3883], 'identification,': [34, 700], 'classification,': [35, 702, 3774], 'quantification,': [36, 704], 'prediction': [38, 988, 2427], '(ICQP),': [39], 'specifically': [40, 453, 2335, 2566], 'focusing': [41, 452], 'on': [42, 62, 334, 454, 647, 769, 871, 947, 951, 1571, 1597, 1789, 1806, 2184, 2187, 2496, 2546, 2567, 2928, 2989, 3118, 3452, 3466, 3926], 'digital': [43, 171, 285, 585, 634, 902, 965], 'image–based': [44, 172, 286], 'phenotyping.': [45, 175, 289, 622], 'Best': [46], 'practices,': [47], 'future': [48, 211, 325, 2648], 'avenues,': [49], 'potential': [51, 336], 'applications': [52, 517, 572], 'sciences': [58], 'with': [59, 188, 302, 437, 523, 601, 616, 692, 1187, 1648, 1678, 1810, 1882, 1989, 2220, 2379, 2409, 2442, 2534, 2877, 2916, 3000, 3404, 3975], 'focus': [61, 1784], 'phenotyping,': [65], 'including': [66, 490], 'deployment': [67], 'tools,': [70], 'image': [71, 576, 768, 905, 968, 1348, 1381, 1511, 1959, 1964, 1975, 2105, 2337, 2490, 2580, 2682, 2972, 3016, 3529], 'data': [72, 97, 124, 193, 238, 307, 394, 785, 1332, 1512, 1572, 1604, 1650, 1677, 1686, 1781, 1881, 1940, 2022, 2441, 2678, 2733, 2890, 3408, 3911, 3930, 4026], 'fusion': [73], 'at': [74, 843, 848, 1980, 2006, 2060, 2113, 2866], 'multiple': [75, 1861, 1883, 2215], 'scales': [76], 'enable': [78, 1397, 1836], 'accurate': [79], 'reliable': [81, 127, 241, 1401], 'ICQP,': [84], 'use': [86, 1201, 1443, 2259, 3986], 'novel': [88, 4035], 'circumvent': [91], 'the': [92, 100, 141, 149, 255, 263, 335, 377, 387, 438, 479, 511, 552, 582, 610, 688, 693, 696, 758, 767, 770, 778, 783, 820, 826, 832, 849, 866, 876, 883, 933, 940, 952, 1005, 1016, 1036, 1041, 1047, 1076, 1094, 1097, 1104, 1108, 1128, 1135, 1148, 1159, 1165, 1173, 1230, 1236, 1296, 1353, 1374, 1386, 1398, 1421, 1428, 1483, 1505, 1510, 1521, 1547, 1554, 1582, 1598, 1603, 1611, 1655, 1750, 1779, 1790, 1817, 1823, 1844, 1869, 1872, 1924, 1932, 1936, 1948, 1952, 1968, 1974, 1978, 1981, 1998, 2007, 2011, 2015, 2020, 2031, 2049, 2061, 2068, 2114, 2123, 2180, 2208, 2258, 2310, 2312, 2341, 2377, 2380, 2423, 2438, 2457, 2464, 2542, 2574, 2602, 2612, 2709, 2712, 2716, 2720, 2725, 2732, 2756, 2772, 2800, 2809, 2814, 2829, 2834, 2842, 2846, 2850, 2873, 2898, 2924, 2984, 3026, 3713, 3897, 3902, 3909, 3915, 3927, 3933, 3938, 3946, 3951, 3961, 3968, 4012, 4081, 4106], 'need': [93, 1771], 'accurately': [95], 'labeled': [96, 2676], 'training': [99, 1551, 2021, 2076, 2782, 2815, 3893, 3910, 3918, 4078, 4095], 'tools.': [102], 'Deep': [103, 217, 2237, 3053, 3250], 'learning': [104, 110, 218, 224, 342, 354, 469, 661, 1409, 1460, 1627, 1675, 1684, 1698, 2238, 2322, 2847, 2999, 3014, 3152, 3251, 3371, 3406, 3757, 3905], '(DL),': [105, 219], 'subset': [107, 221, 461], 'machine': [109, 223, 341, 1716, 3803], 'approaches,': [111, 225], 'has': [112, 226, 415, 624, 1001, 1228, 1350, 2882, 3991], 'emerged': [113, 227, 4062], 'as': [114, 228, 558, 811, 819, 831, 932, 944, 1420, 1498, 1639, 1797, 1875, 2099, 2134, 2230, 2586, 2680, 2696, 2738, 2796, 2833, 3913, 4022, 4039], 'versatile': [116, 230], 'tool': [117, 231], 'assimilate': [119, 233], 'large': [120, 150, 234, 264, 435, 1629, 1710, 2026, 2358, 2388, 2634, 2820, 3972, 3989, 4000], 'amounts': [121, 235], 'heterogeneous': [123, 237], 'provide': [126, 177, 240, 291, 541], 'predictions': [128, 242], 'complex': [130, 244, 2109, 2120], 'uncertain': [132, 246], 'phenomena.': [133, 247], 'These': [134, 248, 683, 708, 1325, 2370], 'tools': [135, 183, 213, 249, 297, 327, 464, 484, 1234, 1326, 1396, 1796, 1830], 'are': [136, 250, 1120, 1185, 1452, 1500, 1577, 1672, 1892, 1904, 2004, 2033, 2085, 2111, 2636, 2654, 2687, 2706, 3022], 'increasingly': [137, 251, 720], 'being': [138, 252, 743, 1433], 'used': [139, 253, 764, 1453, 2034, 2073, 2198, 2214], 'by': [140, 254, 451, 581, 901, 908, 939, 964, 971, 1134, 1154, 1172, 1197, 1208, 1218, 1334, 1906, 2019, 2082, 2274, 2292, 3527, 4015, 4079, 4096], 'science': [143, 257, 389, 554, 1819], 'community': [144, 258, 390, 555, 1820, 2874], 'make': [146, 260, 1376], 'sense': [147, 261], 'datasets': [151, 265, 436, 1549, 2389, 2635, 3990], 'now': [152, 266, 1179], 'regularly': [153, 267], 'collected': [154, 268], 'via': [155, 269, 1626, 2119, 2658, 2700], 'high-throughput': [156, 270, 345, 356, 413, 620, 663, 1462], 'genotyping.': [159, 273], 'We': [160, 176, 274, 290, 446, 566, 1814, 1841, 2600, 4104], 'review': [161, 275, 450, 538, 569, 1787], 'recent': [162, 276, 1485, 1804], 'work': [163, 277, 1645], 'where': [164, 278, 719, 761, 1391, 1864, 1898], 'principles': [166, 280], 'have': [167, 281, 486, 1563, 1799, 2196, 4061], 'been': [168, 282, 2197, 2883], 'utilized': [169, 283], 'comparative': [179, 293], 'against': [184, 298], 'other': [185, 299, 1751], 'existing': [186, 300], 'techniques,': [187, 301], 'respect': [189, 303], 'decision': [191, 305, 1953, 2056], 'accuracy,': [192, 306, 1077], 'size': [194, 308], 'requirement,': [195, 309], 'applicability': [197, 311, 1791], 'various': [199, 313, 400, 404, 1233, 1911, 2735, 2889, 4016], 'scenarios.': [200, 314], 'Finally,': [201, 315], 'we': [202, 316, 332, 559, 1437, 2231], 'outline': [203, 317], 'several': [204, 318, 488], 'avenues': [205, 319], 'research': [207, 321, 631], 'leveraging': [208, 322, 2659, 3032], 'current': [209, 323, 2646], 'science.': [216, 330], 'Recently,': [331], 'reported': [333, 830, 931], 'possibilities': [338, 2344], 'utilizing': [340], '(ML)': [343], 'plants': [349, 880, 887, 3607], '[1Singh': [350, 657, 1456], 'A.': [351, 658, 1457, 2965, 3149, 3570, 3815], 'et': [352, 659, 895, 958, 1060, 1074, 1278, 1458, 2140, 2165, 2320, 2482, 2508, 2529, 2557, 2911, 2939, 2980, 3011, 3080, 3111, 3150, 3368, 3393, 3447, 3518, 3571, 3599, 3635, 3650, 3706, 3755, 3799, 3830, 3852, 4043], 'al.Machine': [353, 660, 1459], 'plants.Trends': [360, 667, 1466], 'Plant': [361, 668, 912, 975, 1064, 1467, 3057, 3158, 3377, 3410], 'Sci.': [362, 669, 913, 976, 1468, 3159, 3378, 3411, 3812], '2016;': [363, 670, 1469, 2991, 3004, 3379, 3533], '21:': [364, 671, 1470], '110-124Abstract': [365, 672, 1471], 'Full': [366, 368, 673, 675, 1472, 1474], 'Text': [367, 369, 674, 676, 1473, 1475], 'PDF': [370, 677, 1476], 'PubMed': [371, 678, 1320, 1477, 2248, 2448, 2522, 3163, 3382, 3415, 3536, 3589, 3617, 3726, 3819], 'Scopus': [372, 679, 917, 980, 1264, 1291, 1321, 1478, 2249, 2331, 2449, 2523, 3126, 3164, 3264, 3383, 3416, 3537, 3590, 3618, 3671, 3727, 3770, 3820, 3845, 3869], '(500)': [373, 680, 1479], 'Google': [374, 681, 919, 982, 1090, 1266, 1293, 1323, 1480, 2251, 2333, 2451, 2525, 3128, 3166, 3266, 3385, 3418, 3539, 3592, 3620, 3673, 3729, 3772, 3822, 3847, 3871], 'Scholar].': [375, 682, 920, 983, 1091, 1324, 2252, 4103], 'With': [376], 'rapidly': [378, 459], 'increasing': [379, 418], 'sophistication,': [380], 'capability,': [381], 'miniaturization': [383], 'imaging': [385, 586, 635], 'sensors,': [386], 'is': [391, 472, 503, 508, 539, 579, 587, 723, 742, 757, 763, 780, 817, 829, 865, 923, 930, 987, 1013, 1127, 1143, 1169, 1178, 1390, 1418, 1544, 1616, 1788, 1850, 1965, 2058, 2072, 2641, 2727, 2752, 2869, 3038, 3043, 3896, 3904, 3935, 4002, 4006], 'facing': [392], 'deluge': [395], 'images': [398, 1203, 1375, 3711], 'under': [399, 403, 1052, 2900], 'environments': [401], 'stresses': [405], 'abiotic).': [408], 'This': [409, 471, 502, 578, 623, 1000, 1168, 1227, 1389, 2289], 'ability': [410, 1429], 'perform': [412], 'resulted': [416, 625], 'interest': [419, 432], 'automated': [421, 495, 499, 1188, 1214], 'approaches': [422, 1699, 3954], 'extract': [424], 'features': [425, 1506, 1903, 2080, 2097, 2110, 2219], '(i.e.,': [426, 1360, 1446, 1674, 1683, 1737, 3931], 'symptoms': [427, 774, 998, 3763], 'organs)': [429], 'physiological': [431], 'from': [433, 530, 725, 1410, 1509, 1531, 1676, 1685, 1729, 1871, 2711, 2731, 3608, 3661, 3880, 3983, 4025, 4052], 'these': [434, 1183, 2410], 'intent': [439], 'identifying': [441, 739], 'quantifying': [443, 1312], 'stresses.': [445], 'complement': [447], 'our': [448, 564, 568, 2608], 'earlier': [449], 'very': [456, 2357, 2387, 3988, 4008], 'promising': [457, 1487], 'advancing': [460], 'ML': [463, 516, 521, 639, 762, 1225, 1392, 1406, 1417, 1440, 1558, 1561, 1588, 1667, 1854, 2418, 2622, 2748, 2766, 3969], 'this': [466, 537, 1607, 1663, 1786, 2075], 'work:': [467], 'deep': [468, 1754, 1764, 1999, 2300, 2486, 2535, 2568, 2917, 2967, 2998, 3082, 3119, 3370, 3405, 3612, 3802, 3838, 4076, 4093], '(DL).': [470], 'especially': [473, 1394], 'important': [474], 'topical': [476], 'due': [477], 'remarkable': [480], 'advances': [481, 1825, 1838], 'that': [485, 507, 551, 573, 584, 736, 1182, 1191, 1425, 1442, 1451, 1490, 1543, 1617, 1662, 1816, 1908, 1926, 2089, 2302, 2395, 2753, 2881, 3889, 4113], 'transformed': [487, 1942, 1966], 'disciplines,': [489], 'consumer': [491, 2618], 'analytics,': [492], 'autonomous': [493], 'vehicles,': [494], 'medical': [496], 'diagnostics,': [497], 'financial': [500], 'management.': [501], 'also': [504, 4074], 'an': [505, 1162, 1532, 1557, 1620, 1958, 1962, 1990, 2104, 2225, 2242, 2681, 2788, 2863, 3395], 'area': [506, 934, 1258], 'quickly': [509], 'becoming': [510, 2655], 'workhorse': [512], 'strategy': [513, 1033], 'most': [515, 2421], '(Figure': [518, 1513, 1887, 2777], '1': [519], 'compares': [520], 'papers': [522, 525], 'over': [526], '10-year': [528], 'period': [529, 839], '2008': [531], '2018).': [533], 'Our': [534, 1783], 'goal': [535, 779], 'comprehensive': [543, 4110], 'overview,': [544], 'infer': [545], 'trends,': [546], 'identify': [548, 2729], 'outstanding': [549], 'problems': [550, 652, 1668, 1809, 2893], 'could': [556, 2303], 'pursue': [557], 'integrate': [560], 'concepts': [562, 643], 'into': [563, 713, 791], 'domain.': [565], 'limit': [567], 'primarily': [574, 2349], 'utilize': [575], 'data.': [577], 'motivated': [580], 'fact': [583], 'relatively': [588], 'cheap;': [589], 'can': [590, 597, 644, 1777, 1821, 2664, 2858, 3981], 'be': [591, 598, 645, 2407, 2665, 2859, 2886], 'deployed': [592, 646], 'scalable': [595, 2174], 'manner;': [596], 'easily': [599], 'integrated': [600], 'manual,': [602], 'ground,': [603], 'aerial': [605, 3663], 'platforms;': [606], 'requires': [608, 3890], 'potentially': [609], 'least': [611], 'technical': [612], 'expertise': [613], 'deploy': [615], 'off-the-shelf': [617], 'components': [618, 1746], 'veritable': [628], 'explosion': [629], 'activities': [632], 'using': [633, 1224, 1255, 1285, 1691, 1894, 1967, 3611, 3837], 'applications.': [638], '(and': [640, 1393], 'hence': [641], 'DL)': [642, 1395], 'four': [648, 697, 709], 'broad': [649], 'categories': [650, 684, 698, 710], 'form': [685, 2613, 3947], 'part': [686], 'so-called': [689], "'ICQP'": [690], 'paradigm': [691], 'acronym': [694], 'representing': [695], '(i)': [699, 1039, 2354], '(ii)': [701, 1157, 2360], '(iii)': [703, 2366], '(iv)': [706], 'prediction.': [707], 'naturally': [711], 'fall': [712], 'continuum': [715], 'feature': [717, 1220, 1404, 1517, 1540, 1568, 1583, 1623, 1658, 1702, 1735, 1774, 2760], 'extraction': [718, 1221, 1569, 1584, 1624, 1659, 1703, 1736, 1775, 2761], 'more': [721, 805, 925, 1484, 2108], 'information': [722], 'inferred': [724], 'given': [727, 2018], 'image.': [728], 'Identification': [729], 'refers': [730, 1519], 'detection': [732, 1275, 3256], 'specific': [734, 2631], 'stress,': [735, 809], 'is,': [737, 2090], 'simply': [738], 'which': [740, 828, 1044, 1856, 2385, 2462, 3021], 'exhibited,': [744], 'example,': [746, 1708, 1956], 'sudden': [747, 2697, 3788], 'death': [748, 2698, 3789], 'syndrome': [749, 3403], 'soybean': [751, 2693], 'or': [752, 789, 799, 842, 875, 891, 950, 1151, 1507, 1535, 1681, 1762, 1951, 2639, 3566], 'rust': [753, 3500], 'wheat.': [755], 'Classification': [756], 'next': [759, 1842, 2254, 3027], 'step,': [760], 'classify': [766], 'basis': [771], 'signatures.': [776], 'Here,': [777, 1436], 'place': [782], 'visual': [784], '(leaf,': [786], 'plant,': [787], 'canopy,': [788], 'row)': [790], 'distinct': [793], 'class': [795, 1852, 1976], '(e.g.,': [796, 1200, 1527, 2691], 'low-,': [797], 'medium-,': [798], 'high-stress': [800], 'categories).': [801], 'Quantification': [802], 'involves': [803, 1589, 1619], 'quantitative': [806], 'characterization': [807], 'such': [810, 1638, 1773, 1985, 2133, 2585, 2605, 2695, 2737, 2795, 2904, 3033, 3894, 3994, 4021, 4038], 'incidence': [812, 816, 864], 'severity.': [814], 'Disease': [815, 921, 1065], 'defined': [818, 1419], 'rate': [821], 'new': [823, 1246, 1308, 3877], 'cases': [824, 835], 'disease,': [827, 3134, 3137], 'number': [833, 877, 885, 2027, 2835, 2843], 'occurring': [836], 'within': [837, 2767], 'time': [841, 845, 850], 'any': [844, 1494, 1772], 'instant': [846], '(generally': [847], 'maximum': [852], 'disease': [853, 863, 897, 941, 960, 1084, 1118, 1253, 1274, 1314, 1330, 2694, 3156, 3255, 3375, 3640, 3710, 3834], 'expression).': [854], 'In': [855, 1024, 1515, 1606, 1935, 2177, 2429, 2492, 2539, 2673, 2921, 3460], 'pathology,': [857], 'common': [859, 2870, 3209, 3298], 'way': [860, 4047], 'describe': [862], 'percentage': [867], 'diseased': [869, 879, 1049, 2685], 'leaves': [870], 'single': [873], 'out': [881], 'total': [884], 'field': [890, 3609], 'plot': [892, 1150], '[2Bock': [893, 956], 'C.': [894, 957, 2979, 3598, 4089], 'al.Plant': [896, 959], 'severity': [898, 922, 961, 1254, 3835], 'estimated': [899, 962], 'visually,': [900, 963], 'photography': [903, 966], 'analysis,': [906, 969], 'hyperspectral': [909, 972], 'imaging.Crit.': [910, 973], 'Rev.': [911, 974], '2010;': [914, 977, 2519], '29:': [915, 978], '59-107Crossref': [916, 979], '(518)': [918, 981], 'detailed': [926], 'quantification': [927], 'measure': [928], 'tissue': [937], 'affected': [938], '(commonly': [942], 'presented': [943], 'percentage)': [946], 'leaf': [949, 3087, 3104, 3115, 3139, 3200, 3207, 3212, 3228, 3230, 3233, 3236, 3243, 3295, 3302, 3311, 3334, 3346, 3350, 3364, 3489, 3504, 3528, 3556, 3559, 3596, 3604, 3630, 3632, 3676, 3684, 3693, 3702, 3734, 3746, 3783], 'entire': [953], 'canopy': [955], 'The': [984, 1111, 2078, 2202, 2253, 3029], 'last': [985], 'category': [986], 'ahead': [992], 'time,': [994], 'before': [995, 1550], 'visible': [996], 'appear.': [999], 'substantial': [1002], 'implications': [1003], 'timely': [1006], 'cost-effective': [1008], 'control': [1009], 'one': [1014, 1528, 1609, 2768, 3959, 4112], 'key': [1017, 2743, 3887, 3962], 'drivers': [1018], 'precision': [1020], 'prescriptive': [1022], 'agriculture.': [1023, 1840], 'useful': [1029, 2305, 4009], 'must': [1034], 'satisfy': [1035], 'following': [1037], 'requirements.': [1038], 'Reliability:': [1040], 'degree': [1042], 'measurements': [1045, 1102], 'same': [1048, 1136, 1149], 'individuals': [1050], 'obtained': [1051], 'different': [1053, 1155, 1565], 'conditions': [1054], 'produce': [1055], 'similar': [1056, 2227, 3984], 'results': [1057], '[3Madden': [1058], 'L.V.': [1059], 'al.The': [1061], 'Study': [1062], 'Epidemics.': [1066], 'American': [1067], 'Phytopathological': [1068], 'Society,': [1069], '2007Google': [1070], 'Scholar,': [1071, 2505, 2526], '4Nutter': [1072], 'F.W.': [1073], 'al.Assessing': [1075], 'intra-rater': [1078], 'repeatability,': [1079], 'inter-rater': [1081], 'reliability': [1082, 1115, 1126, 1142, 1194], 'systems.Phytopathology.': [1086], '1993;': [1087], '83:': [1088], '806-812Crossref': [1089], 'Reliability': [1092], 'relates': [1093], 'magnitude': [1095], 'measurement': [1098], 'error': [1099, 1337, 2069], 'observed': [1101], 'inherent': [1105], 'variability': [1106, 1355], "'true'": [1109], 'sample.': [1110], 'two': [1112, 1899], 'types': [1113], 'intra-': [1121], 'interrater': [1123, 1141], 'reliability.': [1124], 'Intrarater': [1125], 'agreement': [1129, 1144], 'between': [1130, 1145, 1439, 2010, 2745], '(trait': [1132], 'measurement)': [1133], 'rater': [1137, 1174, 1206, 1210], 'taken': [1138, 1153], 'temporally,': [1139], 'while': [1140, 2091], 'sample': [1152], 'raters.': [1156], 'Accuracy:': [1158], 'closeness': [1160], 'estimate': [1163], 'actual': [1166, 2012], 'value.': [1167], 'heavily': [1170], 'influenced': [1171], 'experience': [1175, 1601], 'level.': [1176], 'It': [1177], 'well': [1180, 1647], 'understood': [1181], 'requirements': [1184], 'met': [1186], 'workflows': [1190, 1402], 'enhance': [1192, 1553], 'both': [1193, 1694, 1713, 2668], 'accuracy': [1196, 2057], 'reducing': [1198, 4097], 'bias': [1199], 'rather': [1204], 'than': [1205, 2416], 'subjectivity),': [1207], 'removing': [1209], 'fatigue': [1211], '(use': [1212], 'systems),': [1216], 'correct': [1219], '(currently': [1222], 'done': [1223], 'tools).': [1226], 'spurred': [1229], 'development': [1231, 2476], 'like': [1235], 'iPad': [1237, 1247], 'app': [1238, 1270, 1298], "'Estimate'": [1239], '[5Pethybridge': [1240], 'S.J.': [1241, 1302], 'Nelson': [1242, 1303], 'S.C.': [1243, 1304], 'Estimate,': [1244], 'application': [1248, 1310, 1378, 1827, 2293, 3062, 3397], 'photographic': [1256], 'standard': [1257, 1380], 'diagrams.Plant': [1259], 'Dis.': [1260, 1316], '2017;': [1261, 3160, 3412, 3586, 3614, 3643, 3668, 3724, 3767, 3842, 3866], '102:': [1262], '276-281Crossref': [1263], '(15)': [1265], 'Scholar],': [1267, 1294, 2146, 2160, 2195, 2452, 2947, 2960, 2976, 2993, 3006, 3020], 'smartphone': [1269, 1297, 2615], 'sugar': [1272, 1282], 'beet': [1273, 1283], '[6Hallau': [1276], 'L.': [1277], 'al.Automated': [1279, 3600], 'identification': [1280, 3601], 'diseases': [1284, 3088, 3116, 3526, 3580], 'smartphones.Plant': [1286], 'Pathol.': [1287], '2018;': [1288, 3123, 3261, 3816], '67:': [1289], '399-410Crossref': [1290], '(27)': [1292], "'Leaf": [1299], "Doctor'": [1300], '[7Pethybridge': [1301], 'Leaf': [1305], 'Doctor:': [1306], 'portable': [1309], 'severity.Plant': [1315], '2015;': [1317, 2245, 3018, 4101], '99:': [1318], '1310-1316Crossref': [1319], '(106)': [1322], 'seek': [1327], 'improve': [1329], 'rating': [1331], 'quality': [1333, 1357], 'decreasing': [1335], 'human': [1336], 'some': [1340], 'extent': [1341], 'inter-': [1342], 'intrarater': [1344], 'variation.': [1345], 'While': [1346, 1560, 1690, 2620, 2855], 'conventional': [1347], 'processing': [1349, 1382, 1862, 2392, 2578, 2581], 'proved': [1351], 'useful,': [1352], 'complexity': [1359], 'occlusion,': [1361], 'debris,': [1362], 'illumination': [1365], 'intensity': [1366], 'shading,': [1368], 'loss': [1370], 'function)': [1372], 'consistent': [1377], 'challenging': [1384], 'ICQP': [1387, 1455], 'paradigm.': [1388], 'creation': [1399], 'identification.': [1405], 'enables': [1407], 'algorithmic': [1408, 2368, 2400, 4069], 'experience.': [1411], 'According': [1412], 'Arthur': [1414], 'Lee': [1415], 'Samuel,': [1416], "'field": [1422], 'study': [1424], 'gives': [1426], 'computers': [1427], 'learn': [1431, 1878], 'without': [1432, 1687, 2171], 'explicitly': [1434], "programmed'.": [1435], 'distinguish': [1438], "'handcrafted": [1444], "features'": [1445], 'priori': [1448], 'user-identified': [1449], 'features)': [1450], 'Scholar]': [1481, 2334, 2565, 4060], 'versus': [1482], 'do': [1491, 1652], 'not': [1492, 1653, 1770, 2637, 4003], 'require': [1493, 1654, 1701], 'hand-crafting': [1495, 1518], 'features,': [1497], 'they': [1499, 1576, 1671, 1798], 'able': [1501], 'automatically': [1503], "'learn'": [1504], 'representations': [1508, 1879], '2).': [1514, 2778], 'ML,': [1516, 1693], 'exercise': [1522], 'choosing': [1524], 'appropriate': [1525], 'parts': [1526], 'color': [1529], 'channel': [1530], 'RGB': [1533], 'image)': [1534], 'transformations': [1536, 1971, 4017], '[e.g.,': [1537], 'scale': [1538], 'invariant': [1539], 'transform': [1541], '(SIFT)]': [1542], 'raw': [1548, 1649, 1780], 'performance': [1555, 2415, 3925], 'model.': [1559, 2825], 'experts': [1562], 'developed': [1564], 'procedures': [1566], 'depending': [1570], 'model': [1574, 1917, 1987, 2266, 2769, 2805, 3903, 3934], 'types,': [1575], 'still': [1578], 'predominantly': [1579], 'heuristic.': [1580], 'Therefore,': [1581, 3996], 'process': [1585, 1625, 2758, 2816, 3030], 'traditional': [1587, 1692, 2417, 2621, 2746, 2765, 4029], 'time-consuming': [1590], 'trial-and-error': [1591], 'steps': [1592], 'success': [1594, 1802], 'may': [1595, 1727, 1769], 'depend': [1596], 'level': [1599, 2054], 'scientist.': [1605], 'regard,': [1608], 'fundamental': [1612, 2096], 'advantages': [1613], 'it': [1618, 2233, 2868, 2896, 4005], 'automatic': [1621, 3638], 'hierarchical': [1622, 1969, 2086], 'bank': [1630], 'nonlinear': [1632, 1913, 1970, 2218], 'filters': [1633], 'prior': [1634], 'performing': [1636, 1738], 'decision-making,': [1637], 'classification.': [1640, 2491], 'Hence,': [1641], 'models': [1643, 1891, 2301, 2411, 2419, 2663, 2784, 3252, 3895, 3974], 'typically': [1644, 1700, 2785], 'quite': [1646], 'trial-and-error–based': [1656], 'hand-crafted': [1657], 'process.': [1660, 2077], 'Note': [1661], 'applies': [1664], 'all': [1666], 'regardless': [1669], 'whether': [1670], 'supervised': [1673, 1695, 1719, 1760, 2669, 2674, 2747, 2750], 'target': [1679, 1688, 1949, 1982, 2008, 2044, 2062, 3245, 3357, 3695, 3740], 'labels)': [1680], 'unsupervised': [1682, 1697, 1725, 1767, 2671, 2723], 'labels).': [1689], 'better': [1705, 2414], 'performance.': [1706], 'For': [1707, 1955], 'dimensional': [1711], 'data,': [1712], 'support': [1714, 3856], 'vector': [1715, 2703, 3857], '(SVM,': [1717], 'technique)': [1720, 1726], 'K-means': [1722], 'clustering': [1723, 2739], '(an': [1724, 1766], 'benefit': [1728], 'principal': [1731, 1745], 'component': [1732], 'analysis': [1733], '(PCA)-based': [1734], 'PCA': [1739], 'selecting': [1741], 'only': [1742], 'few': [1743], 'top': [1744], 'learning).': [1748], 'On': [1749], 'hand,': [1752, 2867], 'convolutional': [1755, 2536, 2569, 2918, 2956, 2968, 3120, 3652], 'neural': [1756, 1896, 2000, 2169, 2240, 2261, 2443, 2487, 2512, 2537, 2570, 2919, 3121, 3520, 3653, 3942, 4050], 'network': [1757, 2001, 2403, 2571, 2830, 2856, 3035, 3654, 4077, 4094], '(CNN,': [1758], 'model)': [1761, 1768], 'autoencoder': [1765], 'leverage': [1778, 1822], 'directly.': [1782], 'promise': [1793], 'shown': [1800, 2884], 'exceptional': [1801], 'years': [1805], 'complicated': [1807], 'good': [1811], 'predictive': [1812], 'ability.': [1813], 'hope': [1815], 'rapid': [1824], '(from': [1831, 2043], 'successful': [1832, 2823, 2887], 'non-agricultural': [1833], 'applications)': [1834], 'transformative': [1837], 'introduce': [1843], 'basic': [1845], 'idea': [1846], 'DL.': [1848, 2473], 'utilizes': [1857], 'stack': [1859], 'layers': [1863, 1901, 2093, 2116, 2216], 'each': [1865], 'succeeding': [1866], 'layer': [1867, 1874, 1950, 2009, 2714, 2840], 'uses': [1868, 2471], 'output': [1870, 1979, 2690, 2713], 'previous': [1873], 'input': [1876, 1939, 1963, 2677], 'levels': [1884], 'abstraction': [1886, 2118], '3).': [1888], 'Typically,': [1889, 2064], 'built': [1893], 'multilayer': [1895], 'networks': [1897, 2170, 2262, 2488, 2969, 3521, 3943, 4051], 'subsequent': [1900], 'connected': [1905], 'neurons': [1907, 1925], 'essentially': [1909], 'represent': [1910], 'parametrized': [1912], 'transformations.': [1914], 'Examples': [1915, 2902], 'parameters': [1918, 2050, 3980], 'include': [1919, 2828, 2907], 'weights': [1920, 2285, 2702], 'biases': [1922], 'get': [1927, 2374], 'multiplied': [1928], 'added': [1930], 'input,': [1933], 'respectively.': [1934], 'forward': [1937], 'direction,': [1938], 'gets': [1941], 'layer-by-layer': [1945, 2041], 'fashion': [1946, 2042], 'until': [1947, 2051], 'layer.': [1954, 1983, 2063], 'classification': [1960, 2106, 2425, 2533, 2915, 3761], 'problem,': [1961], 'finally': [1973], 'becomes': [1977], 'Training': [1984, 2168], 'begins': [1988], 'initial': [1991, 2092], 'parameter': [1992, 2806], 'set': [1993], '(often': [1994], 'randomly': [1995], 'chosen)': [1996], '(DNN).': [2002], 'Errors': [2003], 'computed': [2005], 'outputs': [2013, 2017], 'desired': [2016], 'labels': [2023], 'examples.': [2029], 'Then': [2030, 2308], 'errors': [2032, 2297, 2705], 'feedback': [2037], 'mechanism': [2038, 2269], 'input)': [2046], 'update': [2048, 2803], 'satisfactory': [2053], 'achieved': [2059], 'method': [2066, 2154], 'called': [2067, 3039, 4071], 'back-propagation': [2070, 2295], 'algorithm': [2071, 2791, 3061, 3064], 'typical': [2079], 'learnt': [2081], 'DNN': [2084, 2824], 'nature,': [2088], 'capture': [2094], 'low-complexity': [2095, 2124], '(such': [2098, 2679, 2832, 3912], 'edges': [2100], 'corners': [2102], 'problem),': [2107], 'formed': [2112], 'higher': [2115], 'combinations': [2121], 'features.': [2125], 'Stochastic': [2126], 'gradient': [2127, 2136], 'descent': [2128, 2137], '(SGD)': [2129], 'its': [2131], 'variants,': [2132], 'minibatch': [2135], '[8Goodfellow': [2138], 'I.': [2139], 'al.Deep': [2141, 3012, 3151, 3519, 3651, 3756], 'Learning.': [2142], 'MIT': [2143], 'Press,': [2144], '2016Google': [2145], 'ADAM': [2147], '[9Kingma': [2148], 'D.P.': [2149], 'Ba': [2150], 'J.': [2151, 2236, 3079, 3634], 'Adam:': [2152], 'A': [2153, 2742], 'stochastic': [2156], 'optimization.CoRR.': [2157], '2014;': [2158, 2974, 4057], '(abs/1412.6980)Google': [2159], 'ADMM': [2162, 2175], '[10Taylor,': [2163], 'G.,': [2164], 'al.': [2166, 2483, 2530, 2912, 3448], '(2016)': [2167, 3449], 'gradients:': [2172], 'approach.': [2176], 'Proceedings': [2178, 2540, 2922], '33rd': [2181], 'International': [2182, 2185, 2544, 2926, 3464], 'Conference': [2183, 2186, 2495, 2545, 2927, 3465], 'Machine': [2188, 3467], 'Learning': [2189, 3054, 3468], '(Vol.': [2190, 2553, 2935], '48),': [2191], 'pp.': [2192, 2502, 2560, 2942, 3472], '2722–2731,': [2193], 'JMLRGoogle': [2194], 'train': [2200, 2299], 'DNNs.': [2201], 'foundation': [2203], 'started': [2206, 2372, 2405], 'mid-1960s': [2209], 'when': [2210, 3901, 3932], 'Ivakhnenko': [2211], 'Lapa': [2213], 'polynomial': [2221], 'activation': [2222, 2853], 'functions': [2223], 'approach': [2226, 3084], 'know': [2232], 'today': [2234], '[11Schmidhuber': [2235], 'networks:': [2241], 'overview.Neural': [2243], 'Netw.': [2244], '61:': [2246], '85-117Crossref': [2247], '(10490)': [2250], 'significant': [2255, 2595], 'milestone': [2256], 'was': [2257, 2290, 2316, 3958], '[12Fukushima': [2263], 'K.': [2264, 2963, 3010, 3705], 'Neural-network': [2265], 'pattern': [2271], 'recognition': [2272, 2338, 3523], 'unaffected': [2273], 'shift': [2275, 4085], 'position.Trans.': [2277], 'IECE': [2278], 'Japan.': [2279], '1979;': [2280], 'J62-A:': [2281], '658-665Google': [2282], 'Scholar];': [2283], 'however,': [2284], 'were': [2286], 'manually': [2287], 'assigned.': [2288], 'followed': [2291], 'yield': [2304], 'distributed': [2306], 'representation.': [2307], 'during': [2309, 3892], '1990s,': [2311], 'concept': [2313], 'CNNs': [2315], 'introduced': [2317, 3024], '[13Lecun': [2318], 'Y.': [2319, 3851], 'al.Gradient-based': [2321], 'document': [2325], 'recognition.Proc.': [2326], 'IEEE.': [2327], '1998;': [2328], '86:': [2329], '2278-2324Crossref': [2330], '(30142)': [2332], 'problems.': [2339, 2428, 3995], 'However,': [2340, 2808], 'power': [2342], 'remained': [2347], 'unrealized': [2348], 'because': [2350], 'three': [2352], 'reasons:': [2353], 'lack': [2355, 2361, 3952], 'datasets,': [2359], 'computing': [2363, 2397], 'power,': [2364], 'certain': [2367], 'deficiencies.': [2369], 'issues': [2371], 'resolved': [2375], 'mid-2000s': [2378], 'advent': [2381], "'big": [2383], "data',": [2384], 'provided': [2386, 2396], 'graphics': [2391], 'units': [2393, 2837], '(GPUs)': [2394], 'resources': [2398, 2596], 'advancements.': [2401], 'Neural': [2402, 2547, 2929], 'capabilities': [2404], 'appreciated': [2408], 'showing': [2412], 'significantly': [2413, 3923], 'benchmark': [2424], 'seminal': [2431], 'paper': [2432], '[14Hinton': [2433], 'G.E.': [2434], 'Salakhutdinov': [2435, 2455], 'R.R.': [2436], 'Reducing': [2437], 'dimensionality': [2439], 'networks.Science.': [2444], '2006;': [2445], '313:': [2446], '504-507Crossref': [2447], '(13497)': [2450], 'Hinton': [2453], 'demonstrated': [2456], 'impressive': [2458], 'capability': [2459], 'DNNs,': [2461], 'opened': [2463], 'door': [2465], 'variety': [2469], 'Pioneering': [2474], 'implementation': [2478], 'studies': [2479], '[15Cireşan,': [2480], 'D.,': [2481], '(2012)': [2484, 2531, 2913], 'Multi-column': [2485], '2012': [2493, 2552, 2934], 'IEEE': [2494, 3463], 'Computer': [2497], 'Vision': [2498], 'Pattern': [2500], 'Recognition,': [2501], '3642-3649,': [2503], 'IEEEGoogle': [2504, 3474], '16Cireşan': [2506], 'D.C.': [2507], 'al.Deep,': [2509], 'big,': [2510], 'simple': [2511, 4046], 'nets': [2513], 'handwritten': [2515], 'digit': [2516], 'recognition.Neural': [2517], 'Comput.': [2518], '22:': [2520], '3207-3220Crossref': [2521], '(654)': [2524], '17Krizhevsky,': [2527], 'A.,': [2528, 2910], 'ImageNet': [2532, 2914], 'networks.': [2538, 2920], '25th': [2543, 2925], 'Information': [2548, 2930], 'Processing': [2549, 2931], 'Systems,': [2550, 2932], 'NIPS': [2551, 2933], '1)': [2554, 2936], '(Pereira,': [2555, 2937], 'F.': [2556, 2938, 2996], 'al.,': [2558, 2940], 'eds),': [2559, 2941], '1097–1105,': [2561, 2943], 'Curran': [2562, 2944], 'Associates': [2563, 2945], 'Inc.Google': [2564, 2946], '(DCNN)': [2572], 'areas': [2575], 'speech': [2577], 'attracted': [2582], 'technological': [2583, 2652], 'giants,': [2584], 'Google,': [2587], 'Facebook,': [2588], 'Amazon,': [2589], 'NVIDIA,': [2590], 'Microsoft,': [2592], 'invest': [2594], 'development.': [2599], 'see': [2601], 'impact': [2603, 2985], 'investment': [2606], 'everyday': [2609], 'lives': [2610], 'apps': [2616], 'microtargeting.': [2619], 'computer': [2624], 'vision': [2625, 3804], 'retain': [2627], 'role': [2629], 'instances': [2632], '(where': [2633], 'available': [2638], 'there': [2640], 'computation': [2643], 'constraint),': [2644], 'many': [2645], 'impactful': [2649], 'scientific': [2650], 'innovations': [2653], 'reality': [2657], 'concepts.': [2661], 'trained': [2666], 'ways.': [2672], 'DL,': [2675, 2724], 'leaf)': [2686], 'mapped': [2688], 'syndrome)': [2699], 'back-propagated': [2707], '(adjusting': [2708], 'weights)': [2710, 2804], 'input;': [2717], 'whereas,': [2718], 'case': [2721], 'objective': [2726], 'patterns': [2730], 'purposes,': [2736], 'hashing.': [2741], 'difference': [2744], 'combines': [2755], 'two-step': [2757], 'decision-making': [2763], 'avoids': [2771], 'often': [2773, 3976, 4007], 'suboptimal': [2774], 'manual': [2775], 'handcrafting': [2776], 'As': [2779], 'discussed': [2780, 3044], 'earlier,': [2781], 'involve': [2786], 'SGD,': [2787], 'iterative': [2789], 'optimization': [2790], '(or': [2792], 'variants': [2793], 'thereof,': [2794], 'ADAM),': [2797], 'accomplish': [2799], 'back-propagation-based': [2801], '(to': [2802, 2818], 'learning.': [2807], 'choice': [2810, 2851], 'hyperparameters': [2812, 2827], 'determines': [2817], 'extent)': [2821], 'Important': [2826], 'architecture': [2831, 2857, 2880], 'layers),': [2845], 'rate,': [2848], 'functions.': [2854], 'chosen': [2860], 'carefully': [2861], 'individual': [2864], 'problem': [2865, 2899, 4082], 'practice': [2871], 'begin': [2876], 'preselected': [2879], 'domains': [2891], 'adapt': [2895], 'consideration.': [2901], 'popular': [2905], 'architectures': [2906, 3036], 'AlexNet': [2908], '[17Krizhevsky,': [2909], 'ZFNet': [2948], '[18Zeiler': [2949], 'M.D.': [2950], 'Fergus': [2951], 'R.': [2952], 'Visualizing': [2953], 'understanding': [2955], 'networks.CoRR.': [2957], '2013;': [2958], '(abs/1311.2901)Google': [2959], 'VGGNet': [2961], '[19Simonyan': [2962], 'Zisserman': [2964], 'Very': [2966], 'large-scale': [2971], 'recognition.CoRR.': [2973, 3017], '(abs/1409.1556)Google': [2975], 'InceptionNet': [2977], '[20Szegedy': [2978], 'al.Inception-v4,': [2981], 'Inception-ResNet': [2982], 'residual': [2987, 3013], 'connections': [2988], 'learning.CoRR.': [2990], '(abs/1602.07261)Google': [2992], 'ExceptionNet': [2994], '[21Chollet': [2995], 'Xception:': [2997], 'depthwise': [3001], 'separable': [3002], 'convolutions.CoRR.': [3003], '(abs/1610.02357)Google': [3005], 'ResNet': [3008], '[22He': [3009], '(abs/1512.03385)Google': [3019], 'briefly': [3023], 'section.': [3028], 'pre-existing': [3034], 'effectively': [3037], "'transfer": [3040], "learning'": [3041], 'later': [3047], 'section': [3048], '(Table': [3049], '1).Table': [3050], '1Examples': [3051], 'Approaches': [3055], 'Stress': [3058], 'Image-Based': [3059], 'PhenotypingDL': [3060], '(ICQP)DL': [3063], 'typePlantPlatformStress': [3065], 'typeStress': [3066], 'nameRefsIdentificationLeNet': [3067], 'architectureBananaManualBiotic': [3068], 'stressEarly': [3069], 'scorch,': [3070, 3076, 3231, 3335], 'cottony': [3071], 'mold,': [3072, 3074, 3244, 3347, 3554, 3557, 3694, 3747], 'ashen': [3073], 'late': [3075, 3217, 3328, 3343, 3681, 3748], 'tiny': [3077], 'whiteness67Amara': [3078], 'al.A': [3081, 3572], 'learning-based': [3083], 'banana': [3086, 3195, 3197], 'classification.Lecture': [3089], 'Notes': [3090], 'Informatics': [3092], '(LNI).': [3093], 'Gesellschaft': [3094], 'für': [3095], 'Informatik,': [3096], '2017:': [3097], '79-88Google': [3098], 'ScholarIdentificationAlexNet,': [3099, 3167, 3267, 3540], 'GoogLeNet,': [3100, 3169, 3543], 'VGGNet-16,': [3101], 'ResNet-20AppleManualBiotic': [3102], 'stressAlternaria': [3103], 'spot,': [3105, 3140, 3187, 3201, 3208, 3229, 3234, 3246, 3296, 3319, 3323, 3338, 3351, 3358, 3677, 3685, 3741, 3745, 3784, 3787], 'mosaic,': [3106, 3222], 'rust,': [3107, 3192, 3210, 3289, 3299, 3629], 'brown': [3108, 3132, 3138, 3199, 3786], 'spot68Liu': [3109], 'B.': [3110], 'al.Identification': [3112], 'apple': [3114, 3188, 3191, 3284, 3287, 3495], 'based': [3117, 3522], 'networks.Symmetry.': [3122], '10:': [3124], '11Crossref': [3125], '(366)': [3127], 'ScholarIdentificationInception-v3,': [3129], 'ImageNetCassavaManualBiotic': [3130], 'stressCassava': [3131], 'streak': [3133], 'cassava': [3135, 3141, 3145, 3155, 3202], 'mosaic': [3136, 3241, 3360, 3426, 3433, 3440, 3444, 3690, 3738], 'green': [3142, 3203, 3442], 'mite': [3143, 3147], 'damage,': [3144], 'red': [3146], 'damage69Ramcharan': [3148], 'image-based': [3154, 3373, 3716, 3832], 'detection.Front.': [3157, 3376], '8:': [3161, 3413], '1852Crossref': [3162], '(307)': [3165], 'ALexNetOWTBn,': [3168], 'Overfeat,': [3170], 'VGGApple,': [3171], 'banana,': [3172], 'blueberry,': [3173, 3269], 'cabbage,': [3174], 'cantaloupe,': [3175], 'cassava,': [3176], 'celery,': [3177], 'cherry,': [3178, 3270, 3483], 'corn,': [3179, 3271], 'cucumber,': [3180], 'eggplant,': [3181], 'gourd,': [3182], 'grape,': [3183, 3272], 'onion,': [3184], 'orangeManualBiotic': [3185], 'stressBacterial': [3186, 3675, 3778], 'scab,': [3189, 3283, 3496], 'cedar': [3190, 3288], 'black': [3193, 3285, 3305, 3308, 3626], 'rot,': [3194, 3286, 3306], 'sigatoka,': [3196], 'speckle,': [3198], 'spider': [3204, 3238, 3354, 3687, 3742], 'mite,': [3205, 3355, 3688], 'Cercospora': [3206], 'northern': [3211, 3301, 3603], 'blight,': [3213, 3220, 3237, 3303, 3312, 3326, 3329, 3341, 3344, 3682, 3749, 3751, 3779], 'esca': [3214], '(black': [3215], 'measles,': [3216, 3309], 'early': [3219, 3325, 3340, 3678, 3750], 'cucumber': [3221, 3432], 'downy': [3223, 3511], 'mildew,': [3224, 3226, 3292, 3332, 3624], 'powdery': [3225, 3291, 3331, 3485, 3497, 3514, 3568], 'frogeye': [3227, 3782], 'Septoria': [3232, 3235, 3349, 3683, 3744, 3785], 'mites,': [3239, 3743], 'tomato': [3240, 3336, 3339, 3342, 3345, 3348, 3352, 3356, 3359, 3362, 3578, 3689, 3692, 3700, 3737, 3759], 'virus,': [3242, 3361, 3423, 3427, 3431, 3434, 3438, 3441, 3691, 3736, 3739], 'TYLCV,': [3247], 'huanglongbing66Ferentinos': [3248], 'K.P.': [3249], 'diagnosis.Comput.': [3258], 'Electron.': [3259], 'Agric.': [3260], '145:': [3262], '311-318Crossref': [3263], '(1150)': [3265], 'GoogLeNetApple,': [3268], 'peach,': [3273, 3478], 'bell': [3274, 3320], 'pepper,': [3275], 'potato,': [3276], 'raspberry,': [3277], 'soybean,': [3278], 'squash,': [3279], 'strawberry,': [3280], 'tomatoManualBiotic': [3281], 'stressApple': [3282], 'cherry': [3290, 3477], 'corn': [3293, 3297, 3300, 3595], 'gray': [3294], 'grape': [3304, 3307, 3310], 'orange': [3313], 'huanglongbing': [3314], '(citrus': [3315], 'greening),': [3316], 'peach': [3317, 3488], 'bacterial': [3318, 3322, 3337, 3752, 3780], 'pepper': [3321], 'potato': [3324, 3327], 'squash': [3330], 'strawberry': [3333], 'two-spotted': [3353, 3686], 'yellow': [3363, 3421, 3425, 3701, 3733], 'curl': [3365, 3703, 3735], 'virus53Mohanty': [3366], 'S.P.': [3367], 'al.Using': [3369], '7:': [3380], '1419https://doi.org/10.3389/fpls.2016.01419Crossref': [3381], '(1595)': [3384], 'ScholarIdentificationModified': [3386], 'LeNetOliveManualBiotic': [3387], 'stressOlive': [3388], 'quick': [3389, 3401], 'decline': [3390, 3402], 'syndrome71Cruz': [3391], 'A.C.': [3392], 'al.X-FIDO:': [3394], 'effective': [3396], 'detecting': [3399], 'olive': [3400], 'fusion.Front.': [3409], '1741Crossref': [3414], '(107)': [3417], 'ScholarIdentificationCNNCucumberManualBiotic': [3419], 'stressMelon': [3420], 'spot': [3422, 3437, 3505, 3696], 'zucchini': [3424], 'cucurbit': [3428], 'chlorotic': [3429], 'yellows': [3430], 'papaya': [3435], 'ring': [3436], 'watermelon': [3439], 'mottle': [3443], 'virus72Fujita,': [3445], 'E.,': [3446], 'Basic': [3450], 'investigation': [3451], 'robust': [3454, 3573], 'practical': [3456], 'diagnostic': [3458], 'system.': [3459], '2016': [3461, 3534], '15th': [3462], 'Applications': [3470], '(ICMLA),': [3471], '989–992,': [3473], 'ScholarIdentificationCaffeNet,': [3475], 'ImageNetPear,': [3476], 'apple,': [3479], 'grapevineManualBiotic': [3480], 'stressPorosity': [3481], '(pear,': [3482], 'peach),': [3484], 'mildew': [3486, 3498, 3512, 3515], '(peach),': [3487], 'curl,': [3490], 'fire': [3491], 'blight': [3492, 3679], '(apple,': [3493, 3501], 'pear),': [3494, 3502], '(apple),': [3499], 'grey': [3503], '(pear),': [3506], 'wilt': [3507, 3658], '(grapevine),': [3508, 3510, 3513], 'mites': [3509], '(grapevine)88Sladojevic': [3516], 'S.': [3517, 3798, 3814, 4087], 'classification.Comput.': [3530], 'Intell.': [3531, 3766, 3840], 'Neurosci.': [3532, 3841], '(3289801)Crossref': [3535], '(856)': [3538], 'ZFNet,': [3541], 'VGG-16,': [3542], 'ResNet-50,': [3544], 'ResNet-101,': [3545], 'ResNetXt-101,': [3546], 'Faster': [3547], 'RCNN,': [3548], 'R-FCN,': [3549], 'SSDTomatoManualBiotic': [3550], 'abiotic': [3552, 3777], 'stressGray': [3553], 'canker,': [3555], 'plague,': [3558], 'miner,': [3560], 'whitefly,': [3561], 'low': [3562], 'temperature,': [3563], 'nutritional': [3564], 'excess': [3565], 'deficiency,': [3567, 3795], 'mildew52Fuentes': [3569], 'deep-learning-based': [3574], 'detector': [3575], 'real-time': [3577], 'pests': [3582], 'recognition.Sensors': [3583], '(Basel,': [3584], 'Switzerland).': [3585], '17:': [3587], '2022Crossref': [3588], '(629)': [3591], 'ScholarIdentificationCNNMaizeUAVBiotic': [3593], 'stressNorthern': [3594], 'blight75DeChant': [3597], 'blight-infected': [3605], 'maize': [3606], 'imagery': [3610], 'learning.Phytopathology.': [3613], '107:': [3615], '1426-1432Crossref': [3616], '(178)': [3619], 'ScholarIdentificationVGG-FCN,': [3621], 'VGG-CNNWheatManualBiotic': [3622], 'stressPowdery': [3623], 'smut,': [3625], 'chaff,': [3627], 'stripe': [3628], 'blotch,': [3631], 'rust73Lu': [3633], 'al.An': [3636, 3800], 'in-field': [3637], 'wheat': [3639], 'diagnosis': [3641, 3720], 'system.CoRR.': [3642], '(abs/1710.08299)Google': [3644], 'ScholarIdentificationVGG-A,': [3645], 'CNNRadishUAVBiotic': [3646], 'stressFusarium': [3647], 'wilt74Ha': [3648], 'J.G.': [3649], 'classifying': [3656], 'Fusarium': [3657], 'radish': [3660], 'unmanned': [3662], 'vehicles.J.': [3664], 'Appl.': [3665], 'Remote': [3666], 'Sens.': [3667], '11:': [3669], '042621Crossref': [3670], '(65)': [3672], 'ScholarIdentificationSCRNNTomatoManualBiotic': [3674], 'tomato,': [3680, 3698], 'virus.70Yamamoto': [3704], 'al.Super-resolution': [3707], 'acceleration': [3714], 'vigor': [3719], 'agriculture.Sensors': [3722], '(Basel).': [3723], '17E2557Crossref': [3725], '(59)': [3728], 'ScholarClassificationAlexNet,': [3730], 'GoogLeNetTomatoManualBiotic': [3731], 'stressTomato': [3732], 'spot77Brahimi': [3753], 'M.': [3754], 'diseases:': [3760], 'visualization.Appl.': [3764], 'Artif.': [3765], '31:': [3768], '299-315Crossref': [3769], '(365)': [3771, 3846], 'ScholarIdentification,': [3773], 'quantificationAlexNetSoybeanManualBiotic': [3775], 'pustule,': [3781], 'syndrome,': [3790], 'iron': [3791], 'deficiency': [3792], 'chlorosis,': [3793], 'potassium': [3794], 'herbicide': [3796], 'injury81Ghosal': [3797], 'explainable': [3801], 'framework': [3805], 'phenotyping.Proc.': [3809], 'Natl.': [3810], 'Acad.': [3811], 'U.': [3813], '115:': [3817], '4613-4618Crossref': [3818], '(263)': [3821], 'ScholarQuantificationVGG-16,': [3823], 'VGG-19,': [3824], 'Inception-v3,': [3825], 'ResNet50AppleManualBiotic': [3826], 'stressBlack': [3827], 'rot78Wang': [3828], 'G.': [3829], 'al.Automatic': [3831], 'estimation': [3836], 'learning.Comput.': [3839], '2017': [3843], '(2917536)Crossref': [3844], 'ScholarPredictionDNNTomatoManualAbiotic': [3848], 'stressWater': [3849], 'stress84Kaneda': [3850], 'al.Multi-modal': [3853], 'sliding': [3854], 'window-based': [3855], 'regression': [3858], 'predicting': [3860], 'water': [3862], 'stress.Knowl.': [3863], 'Based': [3864], 'Syst.': [3865], '134:': [3867], '135-148Crossref': [3868], '(34)': [3870], 'Scholar': [3872], 'Open': [3873], 'table': [3874], 'tab': [3878], 'Apart': [3879, 4024], 'hyperparameter': [3881], 'choices': [3882], 'training,': [3885], 'another': [3886], 'aspect': [3888], 'attention': [3891], 'issue': [3898], 'overfitting,': [3900, 4034], 'excessive': [3906], 'details': [3907], 'about': [3908], 'modeling': [3914], 'noise': [3916], 'data),': [3919], 'thus': [3920], 'leading': [3921], 'poor': [3924], 'unseen': [3928], 'test': [3929], 'deployed).': [3936], 'Before': [3937], 'resurgence': [3939], 'artificial': [3941], '(ANNs)': [3944], 'models,': [3950], 'prevent': [3956, 4049], 'overfitting': [3957, 4065], 'reasons': [3963], 'ANNs': [3964], 'became': [3965], 'unpopular': [3966], 'community.': [3970], 'Although': [3971], 'millions': [3977], 'learnable': [3979], 'suffer': [3982], 'issues,': [3985], 'substantially': [3992], 'reduced': [3993], 'if': [3997], 'sufficiently': [3999], 'dataset': [4001, 4013], 'available,': [4004], 'augment': [4011], '(primarily': [4014], 'original': [4019], 'images,': [4020], 'rotation).': [4023], 'augmentation': [4027], 'regularization': [4030, 4036], 'avoid': [4033], 'dropout': [4040], '[23Srivastava': [4041], 'N.': [4042], 'al.Dropout:': [4044], 'overfitting.J.': [4053], 'Mach.': [4054], 'Learn.': [4055], 'Res.': [4056], '15:': [4058], '1929-1958Google': [4059], 'reduce': [4064], 'models.': [4067], 'Another': [4068], 'modification': [4070], 'batch': [4072], 'normalization': [4073], 'helps': [4075], 'avoiding': [4080], 'covariate': [4084, 4099], '[24Ioffe': [4086], 'Szegedy': [4088], 'Batch': [4090], 'normalization:': [4091], 'accelerating': [4092], 'internal': [4098], 'shift.arXiv.': [4100], '(1502.03167)Google': [4102], 'refer': [4105], 'interested': [4107], 'reader': [4108], 'reviews,': [4111], 'focuses': [4114]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W2886555888', 'counts_by_year': [{'year': 2024, 'cited_by_count': 95}, {'year': 2023, 'cited_by_count': 91}, {'year': 2022, 'cited_by_count': 101}, {'year': 2021, 'cited_by_count': 99}, {'year': 2020, 'cited_by_count': 74}, {'year': 2019, 'cited_by_count': 37}, {'year': 2018, 'cited_by_count': 5}], 'updated_date': '2024-12-30T15:47:09.512301', 'created_date': '2018-08-22'}